2019高考數(shù)學(xué) 突破三角函數(shù)與解三角形問題中的套路 專題03 三角恒等變換學(xué)案 理

上傳人:彩*** 文檔編號:104858663 上傳時間:2022-06-11 格式:DOC 頁數(shù):13 大?。?69KB
收藏 版權(quán)申訴 舉報 下載
2019高考數(shù)學(xué) 突破三角函數(shù)與解三角形問題中的套路 專題03 三角恒等變換學(xué)案 理_第1頁
第1頁 / 共13頁
2019高考數(shù)學(xué) 突破三角函數(shù)與解三角形問題中的套路 專題03 三角恒等變換學(xué)案 理_第2頁
第2頁 / 共13頁
2019高考數(shù)學(xué) 突破三角函數(shù)與解三角形問題中的套路 專題03 三角恒等變換學(xué)案 理_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2019高考數(shù)學(xué) 突破三角函數(shù)與解三角形問題中的套路 專題03 三角恒等變換學(xué)案 理》由會員分享,可在線閱讀,更多相關(guān)《2019高考數(shù)學(xué) 突破三角函數(shù)與解三角形問題中的套路 專題03 三角恒等變換學(xué)案 理(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 專題03 三角恒等變換 知識必備 一、兩角和與差的三角函數(shù)公式 1.兩角和與差的正弦、余弦、正切公式 (1): (2): (3): (4): (5): (6): 2.二倍角公式 (1): (2): (3): 3.公式的常用變形 (1); (2)降冪公式:;; (3)升冪公式:;;; (4)輔助角公式:,其中, 二、簡單的三角恒等變換 1.半角公式 (1) (2) (3) 【注】此公式不用死記硬背,可由二倍角公式推導(dǎo)而來,如下圖: 2.公式的常見變形(和差化積、積化和差公式) (1)積化和差公式: ; ; ; . (2)

2、和差化積公式: ; ; ; . 核心考點 考點一 三角函數(shù)式的化簡與求值 【例1】(三角函數(shù)式的化簡)__________. 【答案】1 【解析】 . 故答案為1. 備考指南 1.三角化簡、求值的常用方法:異名三角函數(shù)化為同名三角函數(shù),異角化為同角,異次化為同次,切化弦,特殊值與特殊角的三角函數(shù)互化. 2.三角化簡的標(biāo)準(zhǔn):三角函數(shù)名稱盡量少,次數(shù)盡量低,最好不含分母,能求值的盡量求值. 3.在化簡時要注意角的取值范圍. 【例2】(給角求值)的值是 A. B. C.

3、 D. 【答案】B 【解析】 ,故選B. 備考指南 給角求值中一般所給出的角都是非特殊角,從表面上來看是很難的,但仔細(xì)觀察會發(fā)現(xiàn)非特殊角與特殊角之間總有一定的關(guān)系.解題時,要利用觀察得到的關(guān)系,結(jié)合公式將非特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù),從而得解. 【例3】(給值求值)“”是“”的 A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 【答案】C 備考指南 已知三角函數(shù)值,求其他三角函數(shù)式的值的一般思路: (1)先化簡所求式子. (2)觀察已知條件與所求式子之間的聯(lián)系(從三角函數(shù)名及角入手)

4、. (3)將已知條件代入所求式子,化簡求值. 【例4】(給值求角)已知,,,,則角的值為 A. B. C. D. 【答案】D 【解析】∵,,∴, ∵,,,故選D. 備考指南 通過求角的某種三角函數(shù)值來求角,在選取函數(shù)時,有以下原則: (1)已知正切函數(shù)值,則選正切函數(shù). (2)已知正、余弦函數(shù)值,則選正弦或余弦函數(shù).若角的范圍是,則選正、余弦皆可;若角的范圍是(0,π),則選余弦較好;若角的范圍為,則選正弦較好. 考點二 三角恒等變換的應(yīng)用 【例5】(與三角函數(shù)定義的綜合應(yīng)用)如圖,點為單位圓上一點,,已

5、知點沿單位圓按逆時針方向旋轉(zhuǎn)到點,則的值為 A. B. C. D. 【答案】B 【解析】由題意可得,cos(+)=,sin(+)=,∈(0,). ∴cos(+2)=2﹣1=2×﹣1=﹣,即﹣sin2=﹣,∴sin2=, 故選B. 備考指南 1.理解三角函數(shù)定義. 2.熟練掌握三角恒等變換公式——二倍角公式,以及誘導(dǎo)公式. 【例6】(在三角形中的應(yīng)用)在三角形中,的值是????????? . 【答案】1 備考指南 1.掌握三角恒等變換公式的逆用. 2.熟悉并記憶三角形中隱含條件:三角形內(nèi)角和為π. 【例7】(

6、在三角函數(shù)圖象與性質(zhì)中的應(yīng)用)已知函數(shù). (1)當(dāng)時,求函數(shù)的值域; (2)已知,函數(shù),若函數(shù)在區(qū)間上是增函數(shù),求的最大值. 【解析】(1), ∵, ∴, ∴, ∴函數(shù)的值域為. (2), 當(dāng)時,, ∵在區(qū)間上是增函數(shù),且, ∴,即,化簡得, ∵,∴, ∴,解得,因此,的最大值為. 備考指南 1.熟練應(yīng)用三角恒等變換公式變形. 2.掌握三角函數(shù)的圖象與性質(zhì). 【例8】(在解三角形中的應(yīng)用)在中,角的對邊分別是,若,,則的周長為 A.5 B.6 C.7

7、 D. 【答案】A 【解析】由正弦定理可得,即, ∵,∴,故的周長為,故選A. 備考指南 1.熟練應(yīng)用三角恒等變換公式變形. 2.掌握正、余弦定理. 能力突破 1.若,,則的值為 A. B. C. D. 【答案】A 2.已知,為銳角,且,,則 A. B. C. D. 【答案】C 【解析】 , ∴, ,選C. 3.設(shè),且滿足,則的取值范圍為 A. B. C. D. 【答案】B 【解析】,又

8、,則,所以,所以,故選B. 4.已知為正整數(shù),,且,則當(dāng)函數(shù)取得最大值時,___________. 【答案】 【解析】由條件知,則由,得=,即,解得或(舍去),則.因為,所以,則當(dāng),即時,函數(shù)取得最大值. 5.設(shè),且滿足. (1)求的值; (2)求的值. 【解析】(1)∵, ∴, ∵, ∴, ∴. (2)由(1)可得:, ∵, ∴, ∴. ∴. 高考通關(guān) 1.(2016新課標(biāo)Ⅱ理)若cos(?α)=,則sin 2α= A. B. C.? D.? 【答案】D 【名師點睛】對于三角函數(shù)的給值求值問題,關(guān)鍵是把待求角用已知角表示: (1)已知角

9、為兩個時,待求角一般表示為已知角的和或差. (2)已知角為一個時,待求角一般與已知角成“倍的關(guān)系”或“互余、互補”關(guān)系. 2.(2016新課標(biāo)Ⅲ理)若,則 A. B. C.1 D. 【答案】A 【解析】方法一:由tan α=,cos2α+sin2α=1,得或,則sin 2α=2sin αcos α=,則cos2α+2sin 2α=+. 方法二:cos2α+2sin 2α=.故選A. 【方法點撥】三角函數(shù)求值: ①“給角求值”將非特殊角向特殊角轉(zhuǎn)化,通過相消或相約消去非特殊角,進而求出三角函數(shù)值; ②“給值求值”關(guān)鍵是目標(biāo)明確,

10、建立已知和所求之間的聯(lián)系. 3.(2017北京理)在平面直角坐標(biāo)系xOy中,角α與角β均以O(shè)x為始邊,它們的終邊關(guān)于y軸對稱.若 ,則=___________. 【答案】 【名師點睛】本題考查了角的對稱關(guān)系,以及誘導(dǎo)公式,常用的一些對稱關(guān)系包含:若與的終邊關(guān)于軸對稱,則 ,若與的終邊關(guān)于軸對稱,則,若與的終邊關(guān)于原點對稱,則. 4.(2018新課標(biāo)Ⅱ理)已知,,則__________. 【答案】 【解析】因為,,所以, 因此 5.(2016四川理)cos2–sin2= . 【答案】 【解析】由三角函數(shù)的半角公式得, 【名師點睛】本題也可以看作來自于課

11、本的題,直接利用課本公式解題,這告訴我們一定要立足于課本.有許多三角函數(shù)的求值問題都是通過三角函數(shù)公式把一般的三角函數(shù)求值轉(zhuǎn)化為特殊角的三角函數(shù)求值而得解. 6.(2016浙江理)已知,則A=______,b=________. 【答案】, 【解析】,所以 【思路點睛】解答本題時先用降冪公式化簡,再用輔助角公式化簡,進而對照可得和的值. 7.(2018江蘇)已知為銳角,,. (1)求的值; (2)求的值. 【解析】(1)因為,,所以. 因為,所以, 因此,. (2)因為為銳角,所以. 又因為,所以, 因此. 因為,所以, 因此,. 【名師點睛】三角函數(shù)求值的三種

12、類型 (1)給角求值:關(guān)鍵是正確選用公式,以便把非特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù). (2)給值求值:關(guān)鍵是找出已知式與待求式之間的聯(lián)系及函數(shù)的差異.一般有如下兩種思路:①適當(dāng)變換已知式,進而求得待求式的值;②變換待求式,便于將已知式的值代入,從而達到解題的目的. (3)給值求角:實質(zhì)是轉(zhuǎn)化為“給值求值”,先求角的某一函數(shù)值,再求角的范圍,進而確定角. 你都掌握了嗎? 有哪些問題?整理一下!

13、

14、

15、

16、

17、 13

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!