2022年高中信息技術(shù) 全國青少年奧林匹克聯(lián)賽教案 遞推法

上傳人:xt****7 文檔編號:105037956 上傳時間:2022-06-11 格式:DOC 頁數(shù):4 大?。?2.02KB
收藏 版權(quán)申訴 舉報 下載
2022年高中信息技術(shù) 全國青少年奧林匹克聯(lián)賽教案 遞推法_第1頁
第1頁 / 共4頁
2022年高中信息技術(shù) 全國青少年奧林匹克聯(lián)賽教案 遞推法_第2頁
第2頁 / 共4頁
2022年高中信息技術(shù) 全國青少年奧林匹克聯(lián)賽教案 遞推法_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高中信息技術(shù) 全國青少年奧林匹克聯(lián)賽教案 遞推法》由會員分享,可在線閱讀,更多相關(guān)《2022年高中信息技術(shù) 全國青少年奧林匹克聯(lián)賽教案 遞推法(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高中信息技術(shù) 全國青少年奧林匹克聯(lián)賽教案 遞推法 所謂遞推,是指從已知的初始條件出發(fā),依據(jù)某種遞推關(guān)系,逐次推出所要求的各中間結(jié)果及最后結(jié)果。其中初始條件或是問題本身已經(jīng)給定,或是通過對問題的分析與化簡后確定。 可用遞推算法求解的題目一般有以下二個特點: (1) 問題可以劃分成多個狀態(tài); (2) 除初始狀態(tài)外,其它各個狀態(tài)都可以用固定的遞推關(guān)系式來表示。 在我們實際解題中,題目不會直接給出遞推關(guān)系式,而是需要通過分析各種狀態(tài),找出遞推關(guān)系式。 遞推法應(yīng)用 例1騎士游歷:(noip1997tg) 設(shè)有一個n*m的棋盤(2<=n<=50,2<=m<=50),如下圖,在

2、棋盤上任一點有一個中國象棋馬, 馬走的規(guī)則為:1.馬走日字 2.馬只能向右走,即如下圖所示: 任務(wù)1:當N,M 輸入之后,找出一條從左下角到右上角的路徑。 例如:輸入 N=4,M=4 輸出:路徑的格式:(1,1)->(2,3)->(4,4) 若不存在路徑,則輸出"no" 任務(wù)2:當N,M 給出之后,同時給出馬起始的位置和終點的位置,試找出從起點到終點的所有路徑的數(shù)目。 例如:(N=10,M=10),(1,5)(起點),(3,5)(終點) 輸出:2(即由(1,5)到(3,5)共有2條路徑) 輸入格式:n,m,x1,y1,x2,y2(分別表示n,m,起

3、點坐標,終點坐標) 輸出格式:路徑數(shù)目(若不存在從起點到終點的路徑,輸出0) 算法分析:為了研究的方便,我們先將棋盤的橫坐標規(guī)定為i,縱坐標規(guī)定為j,對于一個n×m的棋盤,i的值從1到n,j的值從1到m。棋盤上的任意點都可以用坐標(i,j)表示。對于馬的移動方法,我們用K來表示四種移動方向(1,2,3,4);而每種移動方法用偏移值來表示,并將這些偏移值分別保存在數(shù)組dx和dy中,如下表 K Dx[k] Dy[k] 1 2 1 2 2 -1 3 1 2 4 1 -2 根據(jù)馬走的規(guī)則,馬可以由(i-dx[k],j-dy[k])走到(i,j)。只要馬能從(1

4、,1)走到(i-dx[k],j-dy[k]),就一定能走到(i,j),馬走的坐標必須保證在棋盤上。我們以(n,m)為起點向左遞推,當遞推到(i-dx[k],j-dy[k])的位置是(1,1)時,就找到了一條從(1,1)到(n,m)的路徑。 我們用一個二維數(shù)組a表示棋盤,對于任務(wù)一,使用倒推法,從終點(n,m)往左遞推, 設(shè)初始值a[n,m]為(-1,-1),如果從(i,j)一步能走到(n,m),就將(n,m)存放在a[i,j]中。如下表,a[3,2]和a[2,3]的值是(4,4),表示從這兩個點都可以到達坐標(4,4)。從(1,1)可到達(2,3)、(3,2)兩個點,所以a[1,1]存放兩個

5、點中的任意一個即可。遞推結(jié)束以后,如果a[1,1]值為(0,0)說明不存在路徑,否則a[1,1]值就是馬走下一步的坐標,以此遞推輸出路徑。 -1,-1 4,4 4,4 2,3 ???任務(wù)一的源程序: const dx:array[1..4]of integer=(2,2,1,1); dy:array[1..4]of integer=(1,-1,2,-2); type map=record x,y:integer; end; var i,j,n,m,k:integer;

6、a:array[0..50,0..50]of map; begin read(n,m); fillchar(a,sizeof(a),0); a[n,m].x:=-1;a[n,m].y:=-1;{標記為終點} for i:=n downto 2 do {倒推} for j:=1 to m do if a[i,j].x<>0 then for k:=1 to 4 do begin a[i-dx[k],j-dy[k]].x:=i; a[i-dx[k],j-dy[k]].y

7、:=j; end; if a[1,1].x=0 then writeln('no') else begin{存在路徑} i:=1;j:=1; write('(',i,',',j,')'); while a[i,j].x<>-1 do begin k:=i; i:=a[i,j].x;j:=a[k,j].y; write('->(',i,',',j,')'); end; end; end. 對于任務(wù)二,也可以使用遞推法,用數(shù)組A[i,j]存放從起點(x1,y1)到(i,j)的路徑總數(shù),按同樣的方法

8、從左向右遞推,一直遞推到(x2,y2),a[x2,y2]即為所求的解。源程序(略) 在上面的例題中,遞推過程中的某個狀態(tài)只與前面的一個狀態(tài)有關(guān),遞推關(guān)系并不復雜,如果在遞推中的某個狀態(tài)與前面的所有狀態(tài)都有關(guān),就不容易找出遞推關(guān)系式,這就需要我們對實際問題進行分析與歸納,從中找到突破口,總結(jié)出遞推關(guān)系式。我們可以按以下四個步驟去分析:(1)細心的觀察;(2)豐富的聯(lián)想;(3)不斷地嘗試;(4)總結(jié)出遞推關(guān)系式。 下面我們再看一個復雜點的例子。 例2、棧(noipxxpj) 題目大意:求n個數(shù)通過棧后的排列總數(shù)。(1≤n≤18) 如輸入 3 輸出 5 算法分析:先模擬入棧、出棧操作

9、,看看能否找出規(guī)律,我們用f(n)表示n個數(shù)通過棧操作后的排列總數(shù),當n很小時,很容易模擬出f(1)=1;f(2)=2;f(3)=5,通過觀察,看不出它們之間的遞推關(guān)系,我們再分析N=4的情況,假設(shè)入棧前的排列為“4321”,按第一個數(shù)“4”在出棧后的位置進行分情況討論: (1) 若“4”最先輸出,剛好與N=3相同,總數(shù)為f(3); (2) 若“4”第二個輸出,則在“4”的前只能是“1”,“23”在“4”的后面,這時可以分別看作是N=1和N=2時的二種情況,排列數(shù)分別為f(1)和f(2),所以此時的總數(shù)為f(1)*f(2); (3) 若“4”第三個輸出,則“4”的前面二個數(shù)為“12”,后

10、面一個數(shù)為“3”,組成的排列總數(shù)為f(2)*f(1); (4) 若“4”第四個輸出,與情況(1)相同,總數(shù)為f(3); 所以有:f(4)=f(3)+f(1)*f(2)+f(2)*f(1)+f(3); 若設(shè)0個數(shù)通過棧后的排列總數(shù)為:f(0)=1; 上式可變?yōu)椋篺(4)=f(0)*f(3)+f(1)*f(2)+f(2)*f(1)+f(3)*f(0); 再進一步推導,不難推出遞推式: f(n)=f(0)*f(n-1)+f(1)*f(n-2)+…+f(n-1)*f(0); 即f(n)= (n>=1) 初始值:f(0)=1; 有了以上遞推式,就很容易用遞推法寫出程序。 var a:array[0..18]of longint; n,i,j:integer; begin readln(n); fillchar(a,sizeof(a),0); a[0]:=1; for i:=1 to n do for j:=0 to i-1 do a[i]:=a[i]+a[j]*a[i-j-1]; writeln(a[n]); end. 遞推算法最主要的優(yōu)點是算法結(jié)構(gòu)簡單,程序易于實現(xiàn),難點是從問題的分析中找出解決問題的遞推關(guān)系式。對于以上兩個例子,如果在比賽中找不出遞推關(guān)系式,也可以用回溯法求解。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!