《2022年高中數(shù)學(xué) 第三講《柯西不等式與排序不等式》教案(1) 新人教版選修4-5》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué) 第三講《柯西不等式與排序不等式》教案(1) 新人教版選修4-5(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高中數(shù)學(xué) 第三講《柯西不等式與排序不等式》教案(1) 新人教版選修4-5
教學(xué)要求:認(rèn)識(shí)二維柯西不等式的幾種形式,理解它們的幾何意義, 并會(huì)證明二維柯西不等式及向量形式.
教學(xué)重點(diǎn):會(huì)證明二維柯西不等式及三角不等式.
教學(xué)難點(diǎn):理解幾何意義.
教學(xué)過程:
一、復(fù)習(xí)準(zhǔn)備:
1. 提問: 二元均值不等式有哪幾種形式?
答案:及幾種變式.
2. 練習(xí):已知a、b、c、d為實(shí)數(shù),求證
證法:(比較法)=….=
二、講授新課:
1. 教學(xué)柯西不等式:
① 提出定理1:若a、b、c、d為實(shí)數(shù),則.
→ 即二維形式的柯西不等式 → 什么時(shí)候
2、取等號(hào)?
② 討論:二維形式的柯西不等式的其它證明方法?
證法二:(綜合法)
. (要點(diǎn):展開→配方)
證法三:(向量法)設(shè)向量,,則,.
∵ ,且,則. ∴ …..
證法四:(函數(shù)法)設(shè),則
≥0恒成立.
∴ ≤0,即…..
③ 討論:二維形式的柯西不等式的一些變式?
變式: 或
或.
④ 提出定理2:設(shè)是兩個(gè)向量,則.
即柯西不等式的向量形式(由向量法提出 )
→ 討論:上面時(shí)候等號(hào)成立?(是零向量,或者共線)
⑤ 練習(xí):已知a、b、c、d為實(shí)數(shù),求證.
證法:(分析法)平方
3、 → 應(yīng)用柯西不等式 → 討論:其幾何意義?(構(gòu)造三角形)
2. 教學(xué)三角不等式:
① 出示定理3:設(shè),則.
分析其幾何意義 → 如何利用柯西不等式證明
→ 變式:若,則結(jié)合以上幾何意義,可得到怎樣的三角不等式?
3. 小結(jié):二維柯西不等式的代數(shù)形式、向量形式;三角不等式的兩種形式(兩點(diǎn)、三點(diǎn))
三、鞏固練習(xí):
1. 練習(xí):試寫出三維形式的柯西不等式和三角不等式 2. 作業(yè):教材P37 4、5題.
第二課時(shí) 3.1 二維形式的柯西不等式(二)
教學(xué)要求:會(huì)利用二維柯西不等式及三角不等式解決問題,體會(huì)運(yùn)用經(jīng)典不等式的一般方法——發(fā)現(xiàn)具體
4、問題與經(jīng)典不等式之間的關(guān)系,經(jīng)過適當(dāng)變形,依據(jù)經(jīng)典不等式得到不等關(guān)系.
教學(xué)重點(diǎn):利用二維柯西不等式解決問題.
教學(xué)難點(diǎn):如何變形,套用已知不等式的形式.
教學(xué)過程:
一、復(fù)習(xí)準(zhǔn)備:
1. 提問:二維形式的柯西不等式、三角不等式? 幾何意義?
答案:;
2. 討論:如何將二維形式的柯西不等式、三角不等式,拓廣到三維、四維?
3. 如何利用二維柯西不等式求函數(shù)的最大值?
要點(diǎn):利用變式.
二、講授新課:
1. 教學(xué)最大(?。┲担?
① 出示例1:求函數(shù)的最大值?
分析:如何變形? → 構(gòu)造柯西不等式的形式 → 板演
→ 變式: →
5、 推廣:
② 練習(xí):已知,求的最小值.
解答要點(diǎn):(湊配法).
討論:其它方法 (數(shù)形結(jié)合法)
2. 教學(xué)不等式的證明:
① 出示例2:若,,求證:.
分析:如何變形后利用柯西不等式? (注意對比 → 構(gòu)造)
要點(diǎn):…
討論:其它證法(利用基本不等式)
② 練習(xí):已知、,求證:.
3. 練習(xí):
① 已知,且,則的最小值.
要點(diǎn):…. → 其它證法
② 若,且,求的最小值. (要點(diǎn):利用三維柯西不等式)
變式:若,且,求的最大值.
3. 小結(jié):比較柯西不等式的形式,將目標(biāo)式進(jìn)行變形,注意湊配、構(gòu)造等技巧.
三、鞏固練
6、習(xí):
1. 練習(xí):教材P37 8、9題 2. 作業(yè):教材P37 1、6、7題
第三課時(shí) 3.2 一般形式的柯西不等式
教學(xué)要求:認(rèn)識(shí)一般形式的柯西不等式,會(huì)用函數(shù)思想方法證明一般形式的柯西不等式,并應(yīng)用其解決一些不等式的問題.
教學(xué)重點(diǎn):會(huì)證明一般形式的柯西不等式,并能應(yīng)用.
教學(xué)難點(diǎn):理解證明中的函數(shù)思想.
教學(xué)過程:
一、復(fù)習(xí)準(zhǔn)備:
1. 練習(xí):
2. 提問:二維形式的柯西不等式?如何將二維形式的柯西不等式拓廣到三維?
答案:;
二、講授新課:
1. 教學(xué)一般形式的柯西不等式:
① 提問:由平面向量的柯西不等式,如果
7、得到空間向量的柯西不等式及代數(shù)形式?
② 猜想:n維向量的坐標(biāo)?n維向量的柯西不等式及代數(shù)形式?
結(jié)論:設(shè),則
討論:什么時(shí)候取等號(hào)?(當(dāng)且僅當(dāng)時(shí)取等號(hào),假設(shè))
聯(lián)想:設(shè),,,則有,可聯(lián)想到一些什么?
③ 討論:如何構(gòu)造二次函數(shù)證明n維形式的柯西不等式? (注意分類)
要點(diǎn):令 ,則
.
又,從而結(jié)合二次函數(shù)的圖像可知,
≤0
即有要證明的結(jié)論成立. (注意:分析什么時(shí)候等號(hào)成立.)
④ 變式:. (討論如何證明)
2. 教學(xué)柯西不等式的應(yīng)用:
① 出示例1:已知,求的最小值.
分析:如何變形后構(gòu)造柯西不等式
8、? → 板演 → 變式:
② 練習(xí):若,且,求的最小值.
③ 出示例2:若>>,求證:.
要點(diǎn):
3. 小結(jié):柯西不等式的一般形式及應(yīng)用;等號(hào)成立的條件;根據(jù)結(jié)構(gòu)特點(diǎn)構(gòu)造證明.
三、鞏固練習(xí):
1. 練習(xí):教材P41 4題 2. 作業(yè):教材P41 5、6題
第四課時(shí) 3.3 排序不等式
教學(xué)要求:了解排序不等式的基本形式,會(huì)運(yùn)用排序不等式分析解決一些簡單問題,體會(huì)運(yùn)用經(jīng)典不等式的一般方法.
教學(xué)重點(diǎn):應(yīng)用排序不等式證明不等式.
教學(xué)難點(diǎn):排序不等式的證明思路.
教學(xué)過程:
一、復(fù)習(xí)準(zhǔn)備:
1. 提問: 前面所學(xué)
9、習(xí)的一些經(jīng)典不等式?
(柯西不等式、三角不等式)
2. 舉例:說說兩類經(jīng)典不等式的應(yīng)用實(shí)例.
二、講授新課:
1. 教學(xué)排序不等式:
① 看書:P42~P44.
② 提出排序不等式(即排序原理):
設(shè)有兩個(gè)有序?qū)崝?shù)組:···;···.···是,···的任一排列,則有
···+ (同序和)
+···+ (亂序和)
+···+ (反序和)
當(dāng)且僅當(dāng)···=或···=時(shí),反序和等于同序和.
(要點(diǎn):理解其思想,記住其形式)
2. 教學(xué)排序不等式的應(yīng)用:
① 出示例1:設(shè)是n個(gè)互不相同的正整數(shù),求證:
.
分析:如何構(gòu)造有序排列? 如何運(yùn)用套用排序不等式?
證明過程:
設(shè)是的一個(gè)排列,且,則.
又,由排序不等式,得
…
小結(jié):分析目標(biāo),構(gòu)造有序排列.
② 練習(xí):
已知為正數(shù),求證:.
解答要點(diǎn):由對稱性,假設(shè),則,
于是 ,,
兩式相加即得.
3. 小結(jié):排序不等式的基本形式.
三、鞏固練習(xí):
1. 練習(xí):教材P45 1題
2. 作業(yè):教材P45 3、4題