《2022年高二數(shù)學(xué)上學(xué)期第一次月考試題 理 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高二數(shù)學(xué)上學(xué)期第一次月考試題 理 新人教A版(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高二數(shù)學(xué)上學(xué)期第一次月考試題 理 新人教A版
一、選擇題(本大題共10小題,每小題5分,共50分)
1.已知全集 集合,,則陰影部分的集合為( )
(A) (B)
(C) (D)
2.某同學(xué)使用計(jì)算器求個(gè)數(shù)據(jù)的平均數(shù)時(shí),錯(cuò)將其中一個(gè)數(shù)據(jù)輸入為,那么由此求出的平均數(shù)與實(shí)際平均數(shù)的差是( )
(A) (B) (C) (D)
3.設(shè)數(shù)列{}是等差數(shù)列,若,則:( )
2、 (A) 14 (B) 21 (C) 28 (D) 35
4.下圖給出的是計(jì)算的值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條 件是( ) (A) i>10? (B) i<10? (C) i>20? (D) i<20?
否
是
開(kāi)始
s=0,n=3,i=1
s=s+
n=n+2
i=i+1
結(jié)束
輸出s
5. 給出下列四個(gè)命題:①“三個(gè)球全部放入兩個(gè)盒子,其中必有一個(gè)盒子有一個(gè)以上的球”是必然事件②“當(dāng)x為某一實(shí)數(shù)時(shí)可使”是不可能事件 ③“明天南陵縣要下雨”是必然事件④質(zhì)檢員“從100個(gè)燈泡中取出5個(gè),5個(gè)都是
3、次品”是隨機(jī)事件. 正確命題的個(gè)數(shù)是 ( ) (A) 0 (B) 1 (C) 2 (D) 3
6.若定義在區(qū)間(-1,0)內(nèi)的函數(shù)的取值范圍是 ( ) (A) (B) (C) (D)
7. 要從已編號(hào)()的枚最新研制的某型導(dǎo)彈中隨機(jī)抽取枚來(lái)進(jìn)行發(fā)射試驗(yàn),用 每部分選取的號(hào)碼間隔一樣的系統(tǒng)抽樣方法確定所選取的枚導(dǎo)彈的編號(hào)可能是( ?。?
(A) (B) (C) (D)
8.實(shí)數(shù)滿足,若函數(shù)取得最大值,則實(shí)數(shù)的值為( )
(A) (B)
4、 (C) (D)
9. 若,P=,Q=,R=,則 ( )
(A)RPQ (B)PQ R
(C)Q PR (D)P RQ
10.一個(gè)三角形同時(shí)滿足:①三邊是連續(xù)的三個(gè)自然數(shù);②最大角是最小角的2倍,則這個(gè)
三角形最小角的余弦值為( )
(A) (B) (C) (D)
二、填空題(本大題共5小題,每小題5分,共25分)
11.已知向量, ,如果向量與垂直,則的值為
12. 在邊長(zhǎng)為1的正方形內(nèi)隨機(jī)取一點(diǎn),則點(diǎn)到
5、點(diǎn)的距離小于1的概率為 ______________.
13、 設(shè)當(dāng)時(shí),y的值有正有負(fù),則實(shí)數(shù)a的取值范圍是 .
14. 已知樣本的平均數(shù)是,標(biāo)準(zhǔn)差是,則 .
15、關(guān)于函數(shù)f(x)=4sin(2x+), (x∈R)有下列命題:
①y=f(x)是以2π為最小正周期的周期函數(shù);② y=f(x)可 改寫(xiě)為y=4cos(2x-);
③y=f(x)的圖象關(guān)于點(diǎn)(-,0)對(duì)稱(chēng); ④ y=f(x)的圖象關(guān)于直線x=對(duì)稱(chēng);
⑤y=|f(x)︱是以π為最小正周期的周期函數(shù).
其中正確的序號(hào)為 。
6、 南陵中學(xué)高二年級(jí)第一次月考數(shù)學(xué)(理)答題卷
xx年10月
時(shí)間 120分鐘 滿分 150分
題號(hào)
一
二
三
總分
16
17
18
19
20
21
得分
單項(xiàng)選擇題(每小題5分,共50分)
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
二、填空題(每小題5分,共25分)
11、 12、
7、
13、 14、 15、
三.解答題(本大題共6題,共75分)
16.(本題滿分12分) 已知的內(nèi)角、、的對(duì)邊分別為、、, ,且 (1)求角;
(2)若向量 與 共線,求、的值.
17(本題滿分12分)從南陵縣某鄉(xiāng)鎮(zhèn)搜集到的二手房屋銷(xiāo)售價(jià)格和房屋面積的數(shù)據(jù):
(1)畫(huà)出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(2)求線性回歸方程,并在散點(diǎn)圖中加上回歸直線(精確到0.001);
(
8、3)據(jù)(2)的結(jié)果估計(jì)當(dāng)房屋面積為時(shí)的銷(xiāo)售價(jià)格.
18. (本題滿分12分)已知
(1)求的定義域以及使>0成立的x的取值范圍
(2)證明為奇函數(shù); (3)試討論的單調(diào)性
19.(本小題滿分12分)中華人民共和國(guó)《道路交通安全法》中將飲酒后違法駕駛機(jī)動(dòng)車(chē)的行為分成兩個(gè)檔次:“酒后駕車(chē)”和“醉酒駕車(chē)”,其檢測(cè)標(biāo)準(zhǔn)是駕駛?cè)藛T血液中的酒精含量Q(簡(jiǎn)稱(chēng)血酒含量,單位是毫克/100毫升),當(dāng)20≤Q≤80時(shí),為酒后駕車(chē);當(dāng)Q>80時(shí),為醉酒駕車(chē).某市公安局交通管理部門(mén)于xx年1月的某天晚上8點(diǎn)至11點(diǎn)設(shè)點(diǎn)
9、進(jìn)行一次攔查行動(dòng),共依法查出了40名飲酒后違法駕駛機(jī)動(dòng)車(chē)者,如圖為這40名駕駛員抽血檢測(cè)后所得結(jié)果畫(huà)出的頻率分布直方圖(其中Q≥140的人數(shù)計(jì)入120≤Q<140人數(shù)之內(nèi).小矩形從低到高的高度依次為0.0032 0.0043 0.0050 0.0090 0.0125 0.016).
(1)求此次攔查中醉酒駕車(chē)的人數(shù);(2)駕駛?cè)藛T血液中的酒精含量Q的中位數(shù)
(3)從違法駕車(chē)的40人中按酒后駕車(chē)和醉酒駕車(chē)?yán)梅謱映闃映槿?人做樣本進(jìn)行研究,再?gòu)某槿〉?人中任取2人,求2人中無(wú)醉酒駕車(chē)的概率.
10、
20. (本小題滿分13分) 設(shè)數(shù)列{an}的前N項(xiàng)和為,為等比數(shù)列,且 .求 (1)數(shù)列和的通項(xiàng)公式;
(2)設(shè) ,求數(shù)列的前n項(xiàng)和.
21. 函數(shù)在區(qū)間上有零點(diǎn),求實(shí)數(shù)的取值范圍.
南陵中學(xué)高二第一次月考數(shù)學(xué)理科試卷參考答案
1~5 DBCAD 6~10 ABCBD
二、填空題(本大題共5小題,每小題5分,共25分)
11. 12. 13. (,1) 14. 96 15.
11、②③④⑤
三.解答題.
16.(本題滿分12分)
解析: (1)
,即,,
,解得……5分
(2)共線,。
由正弦定理,得,①……8分
,由余弦定理,得,②
聯(lián)立方程①②,得……12分
17解:(1)數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖如圖所示:……..2分
(2),,………4分
設(shè)所求回歸直線方程為,
則;
故所求回歸直線方程為……….8分
(3)當(dāng)時(shí),(萬(wàn)元)……..12分
18.解:(1)
……..2分
另當(dāng)a>1時(shí), >0,則,則
故當(dāng)a>1時(shí),使的x的取值范圍為(0,1)……..4分
時(shí),
則 得,時(shí),
12、使的x的范圍為(-1,0)…..6分
(2)證明:
中為奇函數(shù)……..9分
(3)
.19.(本小題滿分12分)
(1) (0.0032+0.0043+0.0050)×20=0.25,0.25×40=10,
所以此次攔查中醉酒駕車(chē)的人數(shù)為10人.……………4分
(2) 64.375………8分
(3)易知利用分層抽樣抽取4人中含有醉酒駕車(chē)者為1人,則P=1/2………12分
20.解:(1)當(dāng)n=1時(shí),
21解:當(dāng)時(shí),,令,得,是區(qū)間上的零點(diǎn).
當(dāng)時(shí),函數(shù)在區(qū)間上有零點(diǎn)分為三種情況:
①方程在區(qū)間上有重根,
令,解得或.
當(dāng)時(shí),令,得,不是區(qū)間上的零點(diǎn).
當(dāng)時(shí),令,得,是區(qū)間上的零點(diǎn).
②若函數(shù)在區(qū)間上只有一個(gè)零點(diǎn),但不是的重根,
令,解得.
③若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),則
或
解得.
綜上可知,實(shí)數(shù)的取值范圍為.