甘肅省2022年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 圖形初步與三角形單元檢測(四)圖形初步與三角形練習(xí)

上傳人:xt****7 文檔編號:105683242 上傳時間:2022-06-12 格式:DOC 頁數(shù):11 大小:1.07MB
收藏 版權(quán)申訴 舉報(bào) 下載
甘肅省2022年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 圖形初步與三角形單元檢測(四)圖形初步與三角形練習(xí)_第1頁
第1頁 / 共11頁
甘肅省2022年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 圖形初步與三角形單元檢測(四)圖形初步與三角形練習(xí)_第2頁
第2頁 / 共11頁
甘肅省2022年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 圖形初步與三角形單元檢測(四)圖形初步與三角形練習(xí)_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《甘肅省2022年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 圖形初步與三角形單元檢測(四)圖形初步與三角形練習(xí)》由會員分享,可在線閱讀,更多相關(guān)《甘肅省2022年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 圖形初步與三角形單元檢測(四)圖形初步與三角形練習(xí)(11頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、甘肅省2022年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 圖形初步與三角形單元檢測(四)圖形初步與三角形練習(xí) 一、選擇題(本大題共10小題,每小題3分,共30分)                  1.如圖,三角板的直角頂點(diǎn)落在矩形紙片的一邊上.若∠1=35°,則∠2的度數(shù)是 (  ) A.35° B.45° C.55° D.65° 答案C 解析∵∠1+∠3=90°,∠1=35°, ∴∠3=55°, ∴∠2=∠3=55°. 2.已知下列命題:①若>1,則a>b;②若a+b=0,則|a|=|b|;③等邊三角形的三個內(nèi)角都相等;④底角相等的兩個等腰三角形全等.其中原命題與逆命題均為真

2、命題的個數(shù)是(  ) A.1個 B.2個 C.3個 D.4個 答案A 解析∵當(dāng)b<0時,如果>1,那么a

3、sin 55°米 C.100tan 35°米 D.100tan 55°米 答案C 解析∵PA⊥PB,PC=100米,∠PCA=35°, ∴小河寬PA=PCtan∠PCA=100tan 35°米. 4.在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時停止運(yùn)動,則此時點(diǎn)C的對應(yīng)點(diǎn)C'的坐標(biāo)為(  ) A.,0 B.(2,0) C.,0 D.(3,0) 答案C 解析過點(diǎn)B作BD⊥x軸于點(diǎn)D, ∵∠ACO+∠BCD

4、=90°,∠OAC+ACO=90°, ∴∠OAC=∠BCD, 在△ACO與△BCD中, ∴△ACO≌△CBD(AAS),∴OC=BD,OA=CD, ∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1), ∴設(shè)反比例函數(shù)的解析式為y=, 將B(3,1)代入y=,得k=3,∴y=,∴把y=2代入y=,得x=, 當(dāng)頂點(diǎn)A恰好落在該雙曲線上時,此時點(diǎn)A移動了個單位長度, ∴C也移動了個單位長度,此時點(diǎn)C的對應(yīng)點(diǎn)C'的坐標(biāo)為,0. 5. 如圖,在Rt△ABC中,∠ACB=90°,CD為AB邊上的高,CE為AB邊上的中線,AD=2,CE=5,則CD=(  )

5、A.2 B.3 C.4 D.2 答案C 解析在Rt△ABC中,∠ACB=90°,CE為AB邊上的中線,∴CE=AE=5, 又∵AD=2,∴DE=AE-AD=5-2=3, ∵CD為AB邊上的高,∴∠CDE=90°, ∴△CDE為直角三角形 ∴CD==4. 6. (xx湖南婁底)如圖,由四個全等的直角三角形圍成的大正方形的面積是169,小正方形的面積為49,則sin α-cos α=(  ) A. B.- C. D.- 答案D 解析∵小正方形面積為49,大正方形面積為169, ∴小正方形的邊長是7,大正方形的邊長是13,在Rt△ABC中,AC2+BC2=AB2,即AC2

6、+(7+AC)2=132, 整理得AC2+7AC-60=0,解得AC=5,AC=-12(舍去), ∴BC==12, ∴sin α=,cos α=, ∴sin α-cos α==-. 7. (xx陜西)在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足為D,∠ABC的平分線交AD于點(diǎn)E,則AE的長為(  ) A. B.2 C. D.3 答案C 解析∵AD⊥BC,∴△ADC是直角三角形, ∵∠C=45°,∴∠DAC=45°,∴AD=DC, ∵AC=8,∴AD=4,在Rt△ABD中,∠B=60°,∴BD=, ∵BE平分∠ABC,∴∠EBD=30°,

7、 ∴DE=BD·tan 30°=, ∴AE=AD-DE=4. 8.(xx湖北黃岡)如圖,在△ABC中,DE是AC的垂直平分線,且分別交BC,AC于點(diǎn)D和E,∠B=60°,∠C=25°,則∠BAD為(  ) A.50° B.70° C.75° D.80° 答案B 解析由三角形的內(nèi)角和定理,得∠BAC=180°-∠B-∠C=180°-60°-25°=95°. 又由垂直平分線的性質(zhì),知∠C=∠DAC=25°,∴∠BAC=∠BAD+∠DAC=∠BAD+∠C=∠BAD+25°=95° ∴∠BAD=95°-25°=70°. 9.如圖,△ABC的面積是12,點(diǎn)D,E,F,G分別是BC

8、,AD,BE,CE的中點(diǎn),則△AFG的面積是(  ) A.4.5 B.5 C.5.5 D.6 答案A 解析∵點(diǎn)D,E,F,G分別是BC,AD,BE,CE的中點(diǎn),∴AD是△ABC的中線,BE是△ABD的中線,CF是△ACD的中線,AF是△ABE的中線,AG是△ACE的中線, ∴△AEF的面積=×△ABE的面積=×△ABD的面積=×△ABC的面積=, 同理可得△AEG的面積=, △BCE的面積=×△ABC的面積=6, 又∵FG是△BCE的中位線,∴△EFG的面積=×△BCE的面積=, ∴△AFG的面積是×3==4.5. 10. (xx江蘇南通)如圖,等邊△ABC的邊長為3

9、cm,動點(diǎn)P從點(diǎn)A出發(fā),以每秒1 cm的速度,沿A→B→C的方向運(yùn)動,到達(dá)點(diǎn)C時停止,設(shè)運(yùn)動時間為x(s),y=PC2,則y關(guān)于x的函數(shù)的圖象大致為 (  ) 答案C 解析∵正△ABC的邊長為3 cm, ∴∠A=∠B=∠C=60°,AC=3 cm. ①當(dāng)0≤x≤3時,即點(diǎn)P在線段AB上時,AP=x cm(0≤x≤3); 解法一:根據(jù)余弦定理知cos A=,即, 解得y=x2-3x+9(0≤x≤3);該函數(shù)圖象是開口向上的拋物線; 解法二:過C作CD⊥AB,則AD=1.5 cm,CD= cm, 點(diǎn)P在AB上時,AP=x cm,PD=|1.5-x| cm,∴y=PC2=2+(1

10、.5-x)2=x2-3x+9(0≤x≤3), 該函數(shù)圖象是開口向上的拋物線; ②當(dāng)3

11、110°,∠2=100°,則∠3=     .? 答案150° 解析如圖, ∵m∥n,∠1=110°,∴∠4=70°, ∵∠2=100°,∴∠5=80°, ∴∠6=180°-∠4-∠5=30°, ∴∠3=180°-∠6=150°. 13.三角形三邊長分別為3,4,5,那么最長邊上的中線長等于     .? 答案2.5 解析∵32+42=25=52,∴該三角形是直角三角形,∴×5=2.5. 14.(xx湖南湘潭)《九章算術(shù)》是我國古代最重要的數(shù)學(xué)著作之一,在“勾股”章中記載了一道“折竹抵地”問題:“今有竹高一丈,末折抵地,去本三尺,問折者高幾何?”翻譯成數(shù)學(xué)問題是

12、:如圖所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的長,如果設(shè)AC=x,則可列方程為     .? 答案x2+32=(10-x)2 解析設(shè)AC=x,∵AC+AB=10,∴AB=10-x. ∵在Rt△ABC中,∠ACB=90°, ∴AC2+BC2=AB2,即x2+32=(10-x)2. 15.一個三角形的兩邊長分別為3和6,第三邊長是方程x2-10x+21=0的根,則三角形的周長為     .? 答案16 解析x2-10x+21=0,因式分解得(x-3)(x-7)=0,解得x1=3,x2=7, ∵三角形的第三邊是x2-10x+21=0的根, ∴三角形的

13、第三邊為3或7, 當(dāng)三角形第三邊為3時,3+3=6,不能構(gòu)成三角形,舍去; 當(dāng)三角形第三邊為7時,三角形三邊分別為3,6,7,能構(gòu)成三角形, 則第三邊的長為7. ∴三角形的周長為:3+6+7=16. 16. (xx湖南婁底)如圖,△ABC中,AB=AC,AD⊥BC于D點(diǎn),DE⊥AB于點(diǎn)E,BF⊥AC于點(diǎn)F,DE=3 cm,則BF=     cm.? 答案6 解析在Rt△ADB與Rt△ADC中, ,∴Rt△ADB≌Rt△ADC(HL). ∴S△ABC=2S△ABD=2×AB·DE=AB·DE=3AB, ∵S△ABC=AC·BF,∴AC·BF=3AB, ∵AC=AB,∴

14、BF=3,∴BF=6. 17.(xx四川達(dá)州)如圖,△ABC的周長為19,點(diǎn)D,E在邊BC上,∠ABC的平分線垂直于AE,垂足為N,∠ACB的平分線垂直于AD,垂足為M,若BC=7,則MN的長度為     .? 答案 解析∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE, 在△BNA和△BNE中, ∴△BNA≌△BNE(ASA),∴BA=BE, ∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴點(diǎn)N是AE中點(diǎn),點(diǎn)M是AD中點(diǎn)(三線合一),∴MN是△ADE的中位線, ∵BE+CD=AB+AC=19-BC=19-7=12,∴DE=BE+CD-BC=5

15、, ∴MN=DE=. 18.(xx廣東)如圖,已知等邊△OA1B1,頂點(diǎn)A1在雙曲線y=(x>0)上,點(diǎn)B1的坐標(biāo)為(2,0).過B1作B1A2∥OA1交雙曲線于點(diǎn)A2,過A2作A2B2∥A1B1交x軸于點(diǎn)B2,得到第二個等邊△B1A2B2;過B2作B2A3∥B1A2交雙曲線于點(diǎn)A3,過A3作A3B3∥A2B2交x軸于點(diǎn)B3,得到第三個等邊△B2A3B3;以此類推,…,則點(diǎn)B6的坐標(biāo)為     .? 答案(2,0) 解析如圖,作A2C⊥x軸于點(diǎn)C,設(shè)B1C=a,則A2C=a, OC=OB1+B1C=2+a,A2(2+a,a). ∵點(diǎn)A2在雙曲線y=(x>0)上, ∴(2+

16、a)·a=, 解得a=-1,或a=--1(舍去), ∴OB2=OB1+2B1C=2+2-2=2, ∴點(diǎn)B2的坐標(biāo)為(2,0); 作A3D⊥x軸于點(diǎn)D,設(shè)B2D=b,則A3D=b, OD=OB2+B2D=2+b,A2(2+b,b). ∵點(diǎn)A3在雙曲線y=(x>0)上, ∴(2+b)·b=, 解得b=-,或b=-(舍去), ∴OB3=OB2+2B2D=2-2+2=2, ∴點(diǎn)B3的坐標(biāo)為(2,0); 同理可得點(diǎn)B4的坐標(biāo)為(2,0)即(4,0);…, ∴點(diǎn)Bn的坐標(biāo)為(2,0), ∴點(diǎn)B6的坐標(biāo)為(2,0). 三、解答題(本大題共6小題,共58分) 19.(8分)(

17、xx貴州銅仁)已知:如圖,點(diǎn)A,D,C,B在同一條直線上,AD=BC,AE=BF,CE=DF,求證:AE∥BF. 證明∵AD=BC,∴AC=BD, 在△ACE和△BDF中, ∴△ACE≌△BDF(SSS), ∴∠A=∠B,∴AE∥BF. 20.(8分)(xx浙江杭州)閱讀下列題目的解題過程: 已知a,b,c為△ABC的三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀. 解 ∵a2c2-b2c2=a4-b4(A) ∴c2(a2-b2)=(a2+b2)(a2-b2)(B) ∴c2=a2+b2(C) ∴△ABC是直角三角形 問:(1)上述解題過程,從哪一步開始出

18、現(xiàn)錯誤?請寫出該步的代號:     ;? (2)錯誤的原因?yàn)?          ;? (3)本題正確的結(jié)論為:          .? 解(1)由題目中的解答步驟可得, 錯誤步驟的代號為:C; (2)錯誤的原因?yàn)?沒有考慮a=b的情況, (3)本題正確的結(jié)論為:△ABC是等腰三角形或直角三角形. 21.(10分)如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分別是BG,AC的中點(diǎn). (1)求證:DE=DF,DE⊥DF; (2)連接EF,若AC=10,求EF的長. (1)證明∵AD⊥BC,∴∠ADB=∠ADC=90°, 在△BDG和△ADC中,

19、∴△BDG≌△ADC(SAS), ∴BG=AC,∠BGD=∠C, ∵∠ADB=∠ADC=90°,E,F分別是BG,AC的中點(diǎn),∴DE=BG=EG,DF=AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,∴∠EDG+∠FDA=90°,∴DE⊥DF; (2)解∵AC=10,∴DE=DF=5,由勾股定理得,EF==5. 22.(10分)(xx湖南張家界)2017年9月8日—10日,第六屆翼裝飛行世界錦標(biāo)賽在我市天門山風(fēng)景區(qū)隆重舉行,來自全球11個國家的16名選手參加了激烈的角逐.如圖,某選手從離水平地面1 000米高的A點(diǎn)出發(fā)(AB=1 000米),沿俯角為30°的方向直線飛

20、行1 400米到達(dá)D點(diǎn),然后打開降落傘沿俯角為60°的方向降落到地面上的C點(diǎn),求該選手飛行的水平距離BC. 解過點(diǎn)D作DE⊥AB于E,DF⊥BC于點(diǎn)F, 由題意知∠ADE=30°,∠CDF=30°,在Rt△DAE中. AE=AD=×1 400=700, cos∠ADE=, DE=1 400×=700 EB=AB-AE=1 000-700=300 DF=BE=300 tan∠CDF= FC=300×=100 ∴BC=BF+FC=DE+FC=700+100=800(米). 23.(10分)在△ABC中,∠A=30°,點(diǎn)P從點(diǎn)A出發(fā)以2 cm/s的速度沿折線A-C-B運(yùn)

21、動,點(diǎn)Q從點(diǎn)A出發(fā)以a(cm/s)的速度沿AB運(yùn)動,P,Q兩點(diǎn)同時出發(fā),當(dāng)某一點(diǎn)運(yùn)動到點(diǎn)B時,兩點(diǎn)同時停止運(yùn)動.設(shè)運(yùn)動時間為x(s),△APQ的面積為y(cm2),y關(guān)于x的函數(shù)圖象由C1,C2兩段組成,如圖2所示. (1)求a的值; (2)求圖2中圖象C2段的函數(shù)表達(dá)式; (3)當(dāng)點(diǎn)P運(yùn)動到線段BC上某一段時△APQ的面積,大于當(dāng)點(diǎn)P在線段AC上任意一點(diǎn)時△APQ的面積,求x的取值范圍. 解(1)如圖,作PD⊥AB于D, ∵∠A=30°,∴PD=AP=x, 由題圖2可知,當(dāng)x=1時,y=, ∴×a×1=,∴a=1. (2)如圖,作PD⊥AB于D, 由圖象可知,P

22、B=5×2-2x=10-2x,PD=PB·sin B=(10-2x)·sin B, ∴y=×AQ×PD=x×(10-2x)·sin B, ∵當(dāng)x=4時,y=,∴×4×(10-2×4)·sin B=,解得sin B=, ∴y=x×(10-2x)×=-x2+x; (3)x2=-x2+x, 解得x1=0,x2=2, 由圖象可知,當(dāng)x=2時,y=x2有最大值,最大值是×22=2, -x2+x=2, 解得,x1=3,x2=2, ∴當(dāng)2

23、線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1,且拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),其中A(1,0),C(0,3). (1)若直線y=mx+n經(jīng)過B、C兩點(diǎn),求直線BC和拋物線的解析式; (2)在拋物線的對稱軸x=-1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo); (3)設(shè)點(diǎn)P為拋物線的對稱軸x=-1上的一個動點(diǎn),求使△PBC為直角三角形的點(diǎn)的坐標(biāo). 解(1)依題意得解之得 ∴拋物線的解析式:y=-x2-2x+3. ∵對稱軸為x=-1,且拋物線經(jīng)過A(1,0), ∴把B(-3,0),C(0,3)分別代入直線y=mx+n,得,解之得,

24、 ∴直線y=mx+n的解析式為y=x+3. (2)直線BC與對稱軸x=-1的交點(diǎn)為M,則此時MA+MC的值最小,把x=-1代入直線y=x+3得y=2, ∴M(-1,2).即當(dāng)點(diǎn)M到點(diǎn)的距離與到點(diǎn)的距離之和最小時M的坐標(biāo)為(-1,2). (注:本題只求M坐標(biāo)沒說要證明為何此時MA+MC的值最小,所以答案沒證明MA+MC的值最小的原因). (3)設(shè)P(-1,t),又B(-3,0),C(0,3), ∴BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10, ①若點(diǎn)B為直角頂點(diǎn),則BC2+PB2=PC2即:18+4+t2=t2-6t+10解之得t=-2, ②若點(diǎn)C為直角頂點(diǎn),則BC2+PC2=PB2即:18+t2-6t+10=4+t2解之得t=4, ③若點(diǎn)P為直角頂點(diǎn),則PB2+PC2=BC2即:4+t2+t2-6t+10=18解之得 t1=,t2=. 綜上所述的坐標(biāo)為(-1,-2)或(-1,4)或-1,或-1,.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!