《湖南省2022年中考數(shù)學(xué)總復(fù)習(xí) 第五單元 四邊形單元測(cè)試05 四邊形練習(xí)》由會(huì)員分享,可在線閱讀,更多相關(guān)《湖南省2022年中考數(shù)學(xué)總復(fù)習(xí) 第五單元 四邊形單元測(cè)試05 四邊形練習(xí)(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、湖南省2022年中考數(shù)學(xué)總復(fù)習(xí) 第五單元 四邊形單元測(cè)試05 四邊形練習(xí)
05
四邊形
限時(shí):45分鐘 滿分:100分
一、選擇題(每題5分,共40分)
1.若一個(gè)凸多邊形的內(nèi)角和為720°,則這個(gè)多邊形的邊數(shù)為 ( )
A.4 B.5 C.6 D.7
2.若菱形兩條對(duì)角線的長(zhǎng)分別為12和16,則這個(gè)菱形的邊長(zhǎng)為 ( )
A.5 B.10 C.20 D.14
3.矩形具有而菱形不一定具有的性質(zhì)是 ( )
A.對(duì)角線互相垂直 B.對(duì)角線相等 C.對(duì)角線互相平分 D.鄰邊相等
4.如圖D5-1,EF過(guò)?ABCD對(duì)角線的交點(diǎn)O,交A
2、D于E,交BC于F.若?ABCD的周長(zhǎng)為18,OE=1.5,則四邊形EFCD的周長(zhǎng)為 ( )
圖D5-1
A.14 B.13 C.12 D.10
5.如圖D5-2,正方形ABCD的邊長(zhǎng)為1,點(diǎn)E,F分別是對(duì)角線AC上的兩點(diǎn),EG⊥AB,EI⊥AD,FH⊥AB,FJ⊥AD,垂足分別為G,I,H,J.圖中陰影部分的面積等于 ( )
圖D5-2
A.1 B. C. D.
6.如圖D5-3,點(diǎn)O是矩形ABCD的對(duì)角線AC的中點(diǎn),OM∥AB,交AD于點(diǎn)M.若OM=3,BC=10,則OB的長(zhǎng)為 ( )
圖D5-3
A.5 B.4 C.
3、 D.
7.如圖D5-4,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測(cè)得A,C之間的距離為6 cm,點(diǎn)B,D之間的距離為8 cm,則線段AB的長(zhǎng)為 ( )
圖D5-4
A.5 cm B.4.8 cm C.4.6 cm D.4 cm
8.如圖D5-5,在?ABCD中,CD=2AD,BE⊥AD于點(diǎn)E,F為DC的中點(diǎn),連接EF,BF.下列結(jié)論:
①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結(jié)論的個(gè)數(shù)為 ( )
圖D5-5
A.1 B.2 C.3 D.4
二、填空題
4、(每題5分,共20分)
9.如圖D5-6,已知∠A,以點(diǎn)A為圓心,恰當(dāng)長(zhǎng)為半徑畫弧,分別交AE,AF于點(diǎn)B,D,繼續(xù)分別以點(diǎn)B,D為圓心,線段AB的長(zhǎng)為半徑畫弧交于點(diǎn)C,連接BC,CD,則所得四邊形ABCD為菱形,判定依據(jù)是 .?
圖D5-6
10.如圖D5-7,在?ABCD中,∠ABC=60°,E,F分別在CD和BC的延長(zhǎng)線上,AE∥BD,EF⊥BC,EF=3,則AB的長(zhǎng)是 .
圖D5-7?
11.如圖D5-8,在平面直角坐標(biāo)系中,矩形ABCO的邊OC,OA分別在x軸、y軸上,點(diǎn)E在邊BC上.將該矩形沿AE折疊,點(diǎn)B恰好落在邊OC上的F處.若OA=8,CF=4,
5、則點(diǎn)E的坐標(biāo)是 .?
圖D5-8
12.將n個(gè)邊長(zhǎng)都為2的正方形按如圖D5-9所示擺放,點(diǎn)A1,A2,…,An分別是正方形的中心,則這n個(gè)正方形重疊部分的面積之和是 .?
圖D5-9
三、解答題(共40分)
13.(12分)如圖D5-10,在?ABCD中,∠BCD的平分線與BA的延長(zhǎng)線相交于點(diǎn)E,BH⊥EC于點(diǎn)H.
求證:CH=EH.
圖D5-10
14.(14分)如圖D5-11,在?ABCD中,以點(diǎn)A為圓心,AB的長(zhǎng)為半徑畫弧,交AD于點(diǎn)F;再分別以點(diǎn)B,F為圓心,大于BF的相同長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長(zhǎng),交BC
6、于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形.
(1)根據(jù)以上尺規(guī)作圖的過(guò)程,求證:四邊形ABEF是菱形;
(2)若菱形ABEF的周長(zhǎng)為16,AE=4,求∠C的大小.
圖D5-11
15.(14分)如圖D5-12,在△ABC中,AB=AC,AD是△ABC的角平分線,點(diǎn)O為AB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形.
(2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形?請(qǐng)說(shuō)明理由.
圖D5-12
參考答案
1.C 2.B 3.B 4.
7、C 5.B
6.D [解析] ∵四邊形ABCD是矩形,∴∠D=90°.∵O是矩形ABCD的對(duì)角線AC的中點(diǎn),OM∥AB,∴OM是△ADC的中位線.∵OM=3,∴DC=6.∵AD=BC=10,∴AC==2.∴BO=AC=.故選D.
7.A
8.D
9.四條邊相等的四邊形是菱形
10. [解析] ∵四邊形ABCD是平行四邊形,∴AB∥DC,AB=CD.∵AE∥BD,∴四邊形ABDE是平行四邊形.
∴AB=DE=CD,即D為CE的中點(diǎn).∵EF⊥BC,∴∠EFC=90°.∵AB∥CD,∴∠DCF=∠ABC=60°.∴∠CEF=30°.∵EF=3,
∴CE==2.∴AB=.
11.(-
8、10,3)
12.n-1 [解析] 由題意可得一個(gè)陰影部分面積等于正方形面積的,即×4=1,n個(gè)這樣的正方形重疊部分(陰影部分)的面積和為1×(n-1)=n-1.
13.證明:在?ABCD中,AB∥CD,
∴∠E=∠DCE.
∵CE平分∠BCD,∴∠BCH=∠DCE.
∴∠BCH=∠E.∴BE=BC.
又∵BH⊥EC,∴CH=EH.
14.解:(1)證明:由作圖過(guò)程可知,AB=AF,AE平分∠BAD.∴∠BAE=∠EAF.
∵四邊形ABCD為平行四邊形,
∴BC∥AD.∴∠AEB=∠EAF.
∴∠BAE=∠AEB.∴AB=BE.
∴BE=AF.∴四邊形ABEF為平行四邊形
9、.
∴四邊形ABEF為菱形.
(2)如圖,連接BF,與AE交于點(diǎn)O.
∵四邊形ABEF為菱形,
∴BF與AE互相垂直平分.
∴OA=AE=2.
∵菱形ABEF的周長(zhǎng)為16,∴AF=4.
∴cos∠OAF==.
∴∠OAF=30°.∴∠BAF=2∠OAF=60°.
∵四邊形ABCD為平行四邊形,
∴∠C=∠BAD=60°.
15.解:(1)證明:∵點(diǎn)O為AB的中點(diǎn),OE=OD,
∴四邊形AEBD是平行四邊形.
∵AB=AC,AD是△ABC的角平分線,
∴AD⊥BC,即∠ADB=90°.
∴四邊形AEBD是矩形.
(2)當(dāng)∠CAB=90°時(shí),矩形AEBD是正方形.
理由:∵∠CAB=90°,AB=AC,AD平分∠BAC,
∴AD=BD.
∴矩形AEBD是正方形.