陜西省吳堡縣吳堡中學(xué)高中數(shù)學(xué) 第二章 應(yīng)用舉例2典型例題素材 北師大版必修5(通用)

上傳人:艷*** 文檔編號(hào):111021781 上傳時(shí)間:2022-06-20 格式:DOC 頁(yè)數(shù):4 大小:135.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
陜西省吳堡縣吳堡中學(xué)高中數(shù)學(xué) 第二章 應(yīng)用舉例2典型例題素材 北師大版必修5(通用)_第1頁(yè)
第1頁(yè) / 共4頁(yè)
陜西省吳堡縣吳堡中學(xué)高中數(shù)學(xué) 第二章 應(yīng)用舉例2典型例題素材 北師大版必修5(通用)_第2頁(yè)
第2頁(yè) / 共4頁(yè)
陜西省吳堡縣吳堡中學(xué)高中數(shù)學(xué) 第二章 應(yīng)用舉例2典型例題素材 北師大版必修5(通用)_第3頁(yè)
第3頁(yè) / 共4頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《陜西省吳堡縣吳堡中學(xué)高中數(shù)學(xué) 第二章 應(yīng)用舉例2典型例題素材 北師大版必修5(通用)》由會(huì)員分享,可在線閱讀,更多相關(guān)《陜西省吳堡縣吳堡中學(xué)高中數(shù)學(xué) 第二章 應(yīng)用舉例2典型例題素材 北師大版必修5(通用)(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、應(yīng)用舉例 利用正余弦定理解斜三角形,在實(shí)際應(yīng)用中有著廣泛的應(yīng)用,如測(cè)量、航海、幾何等方面都要用到解三角形的知識(shí),例析如下: 一、測(cè)量問題 例1、如圖1所示,為了測(cè)河的寬度,在一岸邊選定A、B兩點(diǎn),望對(duì)岸標(biāo)記物C,測(cè)得∠CAB=30°, ∠CBA=75°,AB=120cm,求河的寬度. 分析:求河的寬度,就是求△ABC在AB邊上的高,而在河的一邊,已測(cè)出AB長(zhǎng)、∠CAB、∠CBA,這個(gè)三角形可確定. 解析:由正弦定理得,∴AC=AB=120m, 又∵,解得CD=60m. 點(diǎn)評(píng):雖然此題計(jì)算簡(jiǎn)單,但是意義重大,屬于“不過河求河寬問題”. 二、遇險(xiǎn)問題 例2、某艦艇測(cè)得燈塔在

2、它的東15°北的方向,此艦艇以30海里/小時(shí)的速度向正東前進(jìn),30分鐘后又測(cè)得燈塔在它的東30°北.若此燈塔周圍10海里內(nèi)有暗礁,問此艦艇繼續(xù)向東航行有無觸礁的危險(xiǎn)? 解析:如圖艦艇在A點(diǎn)處觀測(cè)到燈塔S在東15°北的方向上;艦艇航行半小時(shí)后到達(dá)B點(diǎn),測(cè)得S在東30°北的方向上. 在△ABC中,可知AB=30×0.5=15,∠ABS=150°,∠ASB=15°,由正弦定理得BS=AB=15,過點(diǎn)S作SC⊥直線AB,垂足為C,則SC=15sin30°=7.5. 這表明航線離燈塔的距離為7.5海里,而燈塔周圍10海里內(nèi)有暗礁,故繼續(xù)航行有觸礁的危險(xiǎn). 點(diǎn)評(píng):有關(guān)斜三角形的實(shí)際問題,其解題的

3、一般步驟是:(1)準(zhǔn)確理解題意,分清已知與所求,尤其要理解應(yīng)用題中的有關(guān)名詞和術(shù)語(yǔ);(2)畫出示意圖,并將已知條件在圖形中標(biāo)出;(3)分析與所研究問題有關(guān)的一個(gè)或幾個(gè)三角形,通過合理運(yùn)用正弦定理和余弦定理求解. 三、追擊問題 例3、如圖3,甲船在A處,乙船在A處的南偏東45°方向,距A有9n mile并以20n mile/h的速度沿南偏西15°方向航行,若甲船以28n mile/h的速度航行,應(yīng)沿什么方向,用多少h能盡快追上乙船? 解析:設(shè)用t h,甲船能追上乙船,且在C處相遇. 在△ABC中,AC=28t,BC=20t,AB=9,設(shè)∠ABC=α,∠BAC=β. ∴α=180°-

4、45°-15°=120°.根據(jù)余弦定理, ,,(4t-3)(32t+9)=0, 解得t=,t=(舍)∴AC=28×=21 n mile,BC=20×=15 n mile. 根據(jù)正弦定理,得,又∵α=120°,∴β為銳角,β=arcsin,又<<,∴arcsin<,∴甲船沿南偏東-arcsin的方向用h可以追上乙船. 點(diǎn)評(píng):航海問題常涉及到解三角形的知識(shí),本題中的 ∠ABC、AB邊已知,另兩邊未知,但他們都是航行的距離,由于兩船的航行速度已知,所以,這兩邊均與時(shí)間t有關(guān).這樣根據(jù)余弦定理,可列出關(guān)于t的一元二次方程,解出t的值. 四、最值問題 例4、某工廠生產(chǎn)主要產(chǎn)品后,留下大量中心

5、角為,半徑為a的扇形邊角料,現(xiàn)要廢物利用,從中剪裁下巨型毛坯,要求矩形面積盡可能大,請(qǐng)問如何裁剪? 分析:從實(shí)際出發(fā),盡可能使面積最大,有兩種裁剪方法.一種是使矩形的一邊落在扇形的半徑上,另一種是使矩形的兩頂點(diǎn)分別在扇形的兩條半徑上,分別計(jì)算出這兩種情況下的最大值,再比較結(jié)果的出最佳方案. 解:方案一, 如圖1,矩形有兩個(gè)頂點(diǎn)在半徑OA上,設(shè)∠AOP =,則PM = a·sin, ∵扇形中心角為,∴∠PQO =,由正弦定理,得:=, 即PQ =·a·sin(-), ∴矩形的MPQR的面積為:S=PM·PQ =·a·sin·sin(-) =·a[cos(-)-cos]≤·a·(1

6、-) =a, 當(dāng)=時(shí),cos(-) = 1,S取得最大值a. 方案二,如圖2,矩形有兩個(gè)頂點(diǎn)分別在扇形的兩條半徑OA、OB上, 設(shè)∠AOM =,∠MRA =×=,∠MRO =,由正弦定理,得:=, 即RM = 2a·sin, 又=,∴OR = 2a·sin(-),∴矩形的MPQR的面積為: S= MR·PQ = 4a·sin·sin(-) = 2a·[cos(-)-cos] ≤2a·(1-) = (2-)a. 即在此情況下,∠AOM ==時(shí),可求出M點(diǎn),然后作出MPQR面積為最大. 由于S-S=a-(2-)a=(-12)>0,所以第一種方案能使裁出的矩形面積最大,即∠AOP ==,使P取在AB弧中點(diǎn),分別向扇形的一條半徑作垂線及平行線得到矩形MPQR,即為最大矩形.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!