《2019-2020學年新教材高中數學 第1章 集合與常用邏輯術語 1.2 集合間的基本關系課后課時精練 新人教A版必修第一冊》由會員分享,可在線閱讀,更多相關《2019-2020學年新教材高中數學 第1章 集合與常用邏輯術語 1.2 集合間的基本關系課后課時精練 新人教A版必修第一冊(4頁珍藏版)》請在裝配圖網上搜索。
1、1.2 集合間的基本關系
A級:“四基”鞏固訓練
一、選擇題
1.下列關系式不正確的是( )
A.{1}?{1,2} B.{0}?{1,2}
C.{2}?{1,2} D.1∈{1,2}
答案 B
解析 ∵0?{1,2},∴{0}?{1,2}不正確;根據子集的概念可知A,C正確;D顯然正確.
2.若集合M=,N=,P=,則M,N,P的關系是( )
A.M=NP B.MN=P
C.MNP D.NPM
答案 B
解析 M=,N==(n∈Z,q=n-1∈Z),P=x=},p∈Z.∴MN=P.
3.若集合A滿足A?B,A?C,B={0,1,
2、2,3},C={0,2,4,8},則滿足上述條件的集合A的個數為( )
A.0 B.1
C.2 D.4
答案 D
解析 ∵A?B,A?C,∴A中最多能含有0,2兩個元素,∴A=?,{0},{2},{0,2}共4個.
4.已知集合A={(x,y)|y=x}和B=,則下列結論正確的是( )
A.1∈A B.B?A C.(1,1)?B D.?∈A
答案 B
解析 B=={(1,1)},故B?A.
5.已知集合A={-1,1},B={x|ax+1=0},若B?A,則實數a的所有可能取值的集合為( )
A.{-1} B.{1} C.{-1,1}
3、D.{-1,0,1}
答案 D
解析 因為B?A,所以當B≠?,即a≠0時,B=,因此有-∈A,所以a=±1;當B=?,即a=0時滿足條件.綜上可得實數a的所有可能取值的集合是{-1,0,1}.
二、填空題
6.滿足條件{x|x2+1=0}M?{x|x2-1=0}的集合M共有________個.
答案 3
解析 因為{x|x2+1=0}=?,{x|x2-1=0}={-1,1},其非空子集為{-1},{1},{-1,1},所以滿足條件{x|x2+1=0}M?{x|x2-1=0}的集合M共有3個.
7.設A={x|-1a},若AB,則a的取值范圍是__
4、______.
答案 a≤-1
解析 從幾何角度看,集合A是數軸上一條定線段,集合B是方向向右的動射線,因為AB,所以射線應當“蓋住”線段,如圖所示.
從圖上看,a=-1也符合題意,所以a≤-1.
8.給出四個對象:0,{0},?,{?},用適當的關系符號表示它們之間的一些關系(寫出你認為正確的所有關系):____________________________________.
答案 0∈{0},0??,0?{?},?{0},?{?},?∈{?}
解析 由元素與集合、集合與集合之間的關系可得.
三、解答題
9.設集合A={y|y=x2+2x+2,x∈R},B={s|
5、s=t2+4t+5,t∈R},試判斷集合A與B的關系.
解 因為x2+2x+2=(x+1)2+1(x∈R)和t2+4t+5=(t+2)2+1(t∈R)都表示大于或等于1的實數,所以集合A與B都表示所有大于或等于1的實數構成的集合,從而A=B.
10.已知集合A={x|2m≤x≤m+2},集合B={x|-3≤x≤5},若A?B,求實數m的取值范圍.
解 ①當A=?時,滿足題意,
此時,2m>m+2,即m>2;
②當A≠?時,由A?B,得
解得-≤m≤2.
綜上可得,實數m的取值范圍是m≥-.
B級:“四能”提升訓練
1.已知集合A={0,1},B={x|x?A},試用列舉法表示
6、集合B,并判斷A與B的關系.
解 對于集合B,從“x?A”可知,B中的元素是集合A的子集.
所以B={?,{0},{1},{0,1}}
很明顯,集合A是集合B的一個元素,從而A∈B.
2.設集合A={x|x2+4x=0},集合B={x|x2+2(a+1)x+a2-1=0,x∈R},若B?A,求實數a的取值范圍.
解 易知A={-4,0},因為B?A,所以分B=A和BA兩種情況.
①當A=B時,B={-4,0},則有-4,0是方程x2+2(a+1)x+a2-1=0的兩根,于是得a=1.
②當BA時,若B=?,則Δ=4(a+1)2-4(a2-1)<0,解得a<-1;
若B≠?,則B={-4}或{0},Δ=4(a+1)2-4(a2-1)=0,
解得a=-1,驗證知B={0}滿足條件,
綜上可知,所求實數a的值滿足a=1或a≤-1.
- 4 -