《2020屆高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題四 概率與統(tǒng)計 第2講 概率、隨機(jī)變量及其分布列專題強(qiáng)化練 理》由會員分享,可在線閱讀,更多相關(guān)《2020屆高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題四 概率與統(tǒng)計 第2講 概率、隨機(jī)變量及其分布列專題強(qiáng)化練 理(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第2講 概率、隨機(jī)變量及其分布列
A級 基礎(chǔ)通關(guān)
一、選擇題
1.某商場舉行有獎促銷活動,抽獎規(guī)則如下:箱子中有編號為1,2,3,4,5的五個形狀、大小完全相同的小球,從中任取兩球,若摸出的兩球號碼的乘積為奇數(shù),則中獎;否則不中獎.則中獎的概率為( )
A. B. C. D.
解析:從5個球中,任取兩球有C=10種情況,其中兩球編號乘積為奇數(shù)有C=3種情況.
所以所求事件的概率P=.
答案:C
2.(2019·廣東汕頭一模)已知離散型隨機(jī)變量X的分布列為
X
0
1
2
3
P
m
則X的數(shù)學(xué)期望E(X)=( )
A. B.
2、1 C. D.2
解析:由題意可得++m+=1,可得m=.
則E(X)=0×+1×+2×+3×=1.
答案:B
3.(2019·湖南雅禮中學(xué)聯(lián)考)如圖,邊長為1的正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),在正方形ABCD內(nèi)隨機(jī)取一個點(diǎn)Q,則點(diǎn)Q取自陰影部分的概率等于( )
A. B.
C. D.
解析:因?yàn)镾△AEG=S△CFH=S△ABC=S正方形ABCD,又S△DGH=S△ADC=S正方形ABCD,所以S陰影=S正方形ABCD,故點(diǎn)Q取自陰影部分的概率等于.
答案:D
4.(2018·全國卷Ⅲ)某群體中的每位成員使用移動支付的概率都為p,
3、各成員的支付方式相互獨(dú)立.設(shè)X為該群體的10位成員中使用移動支付的人數(shù),D(X)=2.4,P(X=4)<P(X=6),則p=( )
A.0.7 B.0.6 C.0.4 D.0.3
解析:依題意,X~B(10,p),
所以D(X)=10p(1-p)=2.4,解得p=0.4或p=0.6.
由P(X=4)<P(X=6)
得Cp4(1-p)6<Cp6(1-p)4,解得p>,
因此p=0.6.
答案:B
5.甲、乙、丙、丁四名同學(xué)報名參加假期社區(qū)服務(wù)活動,社區(qū)服務(wù)活動共有關(guān)懷老人,環(huán)境監(jiān)測、教育咨詢、交通宣傳等四個項(xiàng)目,每人限報其中一項(xiàng),記事件A為“4名同學(xué)所報項(xiàng)目各不相同
4、”,事件B為“只有甲同學(xué)一人報關(guān)懷老人項(xiàng)目”,則P(A|B)=( )
A. B. C. D.
解析:由題設(shè),得P(B)==,P(AB)==,
所以P(A|B)==.
答案:C
二、填空題
6.(2018·全國卷Ⅰ)從2位女生,4位男生中選3人參加科技比賽,且至少有1位女生入選,則不同的選法共有________種(用數(shù)字作答).
解析:法1:分兩種情況:只有1位女生入選,不同的選法有CC=12(種);有2位女生入選,不同的選法有CC=4(種),故至少有1位女生入選的不同的選法有16種.
法2:從6人中任選3人,不同的選法有C=20(種),從6人中任選3人都是男生,不
5、同的選法有C=4(種).
所以至少有1位女生入選的不同的選法有20-4=16(種).
答案:16
7.(2019·浙江卷)在二項(xiàng)式(+x)9的展開式中,常數(shù)項(xiàng)是________,系數(shù)為有理數(shù)的項(xiàng)的個數(shù)是________.
解析:由二項(xiàng)展開式的通項(xiàng)公式可知Tr+1=C·()9-r·xr,r∈N,0≤r≤9,
當(dāng)為常數(shù)項(xiàng)時,r=0,T1=C·()9·x0=()9=16.
當(dāng)項(xiàng)的系數(shù)為有理數(shù)時,9-r為偶數(shù),
可得r=1,3,5,7,9,即系數(shù)為有理數(shù)的項(xiàng)的個數(shù)是5.
答案:16 5
8.(2019·河南六校聯(lián)考)某市高三年級26 000名學(xué)生參加了2019年3月模擬考試,已知數(shù)學(xué)
6、考試成績X~N(100,σ2),統(tǒng)計結(jié)果顯示數(shù)學(xué)考試成績X在80分到120分之間的人數(shù)約為總?cè)藬?shù)的,則數(shù)學(xué)成績不低于120分的學(xué)生人數(shù)約為________.
解析:因?yàn)槌煽僗~N(100,σ2),所以正態(tài)分布曲線關(guān)于X=100對稱,又成績在80分到120分之間的人數(shù)約占總?cè)藬?shù)的,由對稱性知:成績不低于120分的學(xué)生約為總?cè)藬?shù)的×=,所以此次考試成績不低于120分的學(xué)生約有×26 000=3 250.
答案:3250
三、解答題
9.(2018·北京卷)電影公司隨機(jī)收集了電影的有關(guān)數(shù)據(jù),經(jīng)分類整理得到下表:
電影類型
第一類
第二類
第三類
第四類
第五類
第六類
電影部
7、數(shù)
140
50
300
200
800
510
好評率
0.4
0.2
0.15
0.25
0.2
0.1
好評率是指:一類電影中獲得好評的部數(shù)與該類電影的部數(shù)的比值.
假設(shè)所有電影是否獲得好評相互獨(dú)立.
(1)從電影公司收集的電影中隨機(jī)選取1部,求這部電影是獲得好評的第四類電影的概率;
(2)從第四類電影和第五類電影中各隨機(jī)選取1部,估計恰有1部獲得好評的概率;
(3)假設(shè)每類電影得到人們喜歡的概率與表格中該類電影的好評率相等.用“ξk=1”表示第k類電影得到人們喜歡,“ξk=0”表示第k類電影沒有得到人們喜歡(k=1,2,3,4,5,6).寫出方差D(
8、ξ1),D(ξ2),D(ξ3),D(ξ4),D(ξ5),D(ξ6)的大小關(guān)系.
解:(1)設(shè)“從電影公司收集的電影中隨機(jī)選取1部,這部電影是獲得好評的第四類電影”為事件A.
因?yàn)榈谒念愲娪爸蝎@得好評的電影有200×0.25=50(部),
所以P(A)===0.025.
(2)設(shè)“從第四類電影和第五類電影中各隨機(jī)取一部,恰有1部獲得好評”為事件B.
則P(B)=0.25×(1-0.2)+(1-0.25)×0.2=0.35.
故所求事件的概率估計為0.35.
(3)由題意可知,定義隨機(jī)變量如下:
ξk=
則ξk顯然服從兩點(diǎn)分布,故D(ξ1)=0.4×(1-0.4)=0.24,
9、D(ξ2)=0.2×(1-0.2)=0.16,
D(ξ3)=0.15×(1-0.15)=0.127 5,
D(ξ4)=0.25×(1-0.25)=0.187 5,
D(ξ5)=0.2×(1-0.2)=0.16,
D(ξ6)=0.1×(1-0.1)=0.09.
綜上所述,D(ξ1)>D(ξ4)>D(ξ2)=D(ξ5)>D(ξ3)>D(ξ6).
10.(2019·廣東佛山二模)某電子設(shè)備工廠生產(chǎn)一種電子元件,質(zhì)量控制工程師要在產(chǎn)品出廠前將次品檢出.估計這個廠生產(chǎn)的電子元件的次品率為0.2%,且電子元件是不是次品相互獨(dú)立,一般的檢測流程是:先把n個(n>1)電子元件串聯(lián)起來成組進(jìn)行檢驗(yàn).
10、若檢驗(yàn)通過,則全部為正品,若檢測不通過,則至少有一個次品,再逐一檢測,直到把所有的次品找出,若檢測一個電子元件的花費(fèi)為5分錢,檢測一組(n個)電子元件的花費(fèi)為(4+n)分錢.
(1)當(dāng)n=4時,估算一組待檢元件中有次品的概率;
(2)設(shè)每個電子元件檢測費(fèi)用的期望為A(n),求A(n)的表達(dá)式;
(3)試估計n的值,使每個電子元件的檢測費(fèi)的期望最?。?
(提示:用(1-p)n≈1-np進(jìn)行估算)
解:(1)設(shè)事件A:一組(4個)電子元件中有次品,則事件:一組(4個)電子元件中無次品,即4個電子元件均是正品.又4個電子元件是不是次品相互獨(dú)立,則P()=(1-0.002)4,所以P(A)=1
11、-P()=1-(1-0.002)4≈1-(1-4×0.002)=0.008.
(2)設(shè)每組(n個)電子元件的檢測費(fèi)用為X分錢,則X的所有可能取值為n+4,6n+4,
P(X=n+4)=0.998n,P(X=6n+4)=1-0.998n,
則X的分布列為
X
n+4
6n+4
P
0.998n
1-0.998n
所以E(X)=(n+4)×0.998n+(6n+4)×(1-0.998n)=6n+4-5n×0.998n,
則有A(n)==6+-5×0.998n(n>1).
(3)A(n)=6+-5×0.998n=6+-5×(1-0.002)n≈6+-5×(1-0.002n)=
12、1+0.01n+≥1+2=1.4,
當(dāng)且僅當(dāng)0.01n=時取等號,此時n=20.
所以,估計當(dāng)n=20時,每個電子元件平均檢測費(fèi)用最低,約為1.4分錢.
B級 能力提升
11.(2019·浙江卷)設(shè)0<a<1,隨機(jī)變量X的分布列是
X
0
a
1
P
則當(dāng)a在(0,1)內(nèi)增大時,( )
A.D(X)增大 B.D(X)減小
C.D(X)先增大后減小 D.D(X)先減小后增大
解析:由題意知E(X)=0×+a×+1×=,
因此,D(X)=×+×+×=[(a+1)2+(1-2a)2+(a-2)2]=(6a2-6a+6)=.
當(dāng)0<a<時,D(
13、X)單調(diào)遞減;
當(dāng)<a<1時,D(X)單調(diào)遞增;
故當(dāng)a在(0,1)內(nèi)增大時,D(X)先減小后增大.
答案:D
12.某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過1 kg的包裹收費(fèi)10元;重量超過1 kg的包裹,除1 kg收費(fèi)10元之外,超過1 kg的部分,每超出1 kg(不足1 kg,按1 kg計算)需再收5元.該公司將最近承攬的100件包裹的重量統(tǒng)計如下:
包裹重量/kg
1
2
3
4
5
包裹件數(shù)
43
30
15
8
4
公司對近60天,每天攬件數(shù)量統(tǒng)計如下表:
包裹件數(shù)范圍
0~100
101~200
201~300
301~400
14、
401~500
包裹件數(shù)(近似處理)
50
150
250
350
450
天數(shù)
6
6
30
12
6
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計算該公司未來3天內(nèi)恰有2天攬件數(shù)在101~400之間的概率;
(2)①估計該公司對每件包裹收取的快遞費(fèi)的平均值;
②公司將快遞費(fèi)的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費(fèi)用.目前前臺有工作人員3人,每人每天攬件不超過150件,工資100元.公司正在考慮是否將前臺工作人員裁減1人,試計算裁員前后公司每日利潤的數(shù)學(xué)期望,并判斷裁員是否對提高公司利潤更有利?
解:(1)樣本中包裹件數(shù)在101
15、~400之間的天數(shù)為48,頻率f==,故可估計概率為,顯然未來3天中,包裹件數(shù)在101~400之間的天數(shù)X服從二項(xiàng)分布,
即X~B,故所求概率為C××=.
(2)①樣本中快遞費(fèi)用及包裹件數(shù)如下表:
包裹重量/kg
1
2
3
4
5
快遞費(fèi)/元
10
15
20
25
30
包裹件數(shù)
43
30
15
8
4
故樣本中每件快遞收取的費(fèi)用的平均值為=15(元),
故該公司對每件快遞收取的費(fèi)用的平均值可估計為15元.
②根據(jù)題意及(2)①,攬件數(shù)每增加1,可使前臺工資和公司利潤增加15×=5(元),將題目中的天數(shù)轉(zhuǎn)化為頻率,得
包裹件數(shù)
范
16、圍
0~100
101~200
201~300
301~400
401~500
包裹件數(shù)(近似處理)
50
150
250
350
450
天數(shù)
6
6
30
12
6
頻率
0.1
0.1
0.5
0.2
0.1
若不裁員,則每天可攬件的上限為450件,公司每日攬件數(shù)情況如下:
包裹件數(shù)(近似處理)
50
150
250
350
450
實(shí)際攬件數(shù)Y
50
150
250
350
450
頻率
0.1
0.1
0.5
0.2
0.1
E(Y)
50×0.1+150×0.1+250×0.5+350×0.2+
17、450×0.1=260
故公司平均每日利潤的期望值為260×5-3×100=1 000(元).
若裁員1人,則每天可攬件的上限為300件,公司每日攬件數(shù)情況如下:
包裹件數(shù)(近似處理)
50
150
250
350
450
實(shí)際攬件數(shù)Z
50
150
250
300
300
頻率
0.1
0.1
0.5
0.2
0.1
E(Y)
50×0.1+150×0.1+250×0.5+300×0.2+300×0.1=235
故公司平均每日利潤的期望值為235×5-2×100=975(元),
因975<1 000,故公司將前臺工作人員裁減1人對提高公司利潤不利.
- 7 -