《兩角和與差的正弦余弦正切公式【重要知識】》由會員分享,可在線閱讀,更多相關(guān)《兩角和與差的正弦余弦正切公式【重要知識】(21頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、授課教師:郝敬文授課教師:郝敬文班級:一年九班班級:一年九班1重點輔導 引入引入 應(yīng)用應(yīng)用 小結(jié)小結(jié) 探究探究2sin.12cos.22sin.32cos.4cossincossin復(fù)復(fù)習習回回顧顧2重點輔導 引入引入 應(yīng)用應(yīng)用 小結(jié)小結(jié) 探究探究那那 呢?呢?cos75cos15cos(4530)cos75 cos(3045)?coscoscossinsincos 45 cos30sin 45 sin 3023216223224思考cos?3重點輔導 探究探究 應(yīng)用應(yīng)用 小結(jié)小結(jié) 引入引入cos?coscoscossinsin將將 看作為看作為)(cos()coscos()sinsin()c
2、os()coscossinsin公公式式推推導導4重點輔導 應(yīng)用應(yīng)用 小結(jié)小結(jié)公式特點:公式特點:對于任意角對于任意角 都有都有、(2)同名積)同名積(3)符號反)符號反(1)任意角)任意角和角的余弦公式和角的余弦公式 探究探究 引入引入coscoscossinsinCC CSS+cos75 cos(3045)cos30 cos45sin30 sin45624結(jié)結(jié)論論歸歸納納5重點輔導 應(yīng)用應(yīng)用 小結(jié)小結(jié) 探究探究 引入引入cos2 cos2sin2sincos2cossincoscossinsin公公式式推推導導6重點輔導 應(yīng)用應(yīng)用 小結(jié)小結(jié) 探究探究 引入引入)sin(cos)cos(si
3、nsin)(sinsincoscossin公公式式推推導導sinsincoscossin7重點輔導 應(yīng)用應(yīng)用 小結(jié)小結(jié) 探究探究 引入引入兩角和與差的正弦公式兩角和與差的正弦公式1、兩角和的正弦公式、兩角和的正弦公式2、兩角差的正弦公式、兩角差的正弦公式sinsincoscossinsinsincoscossin簡記:簡記:()S簡記:簡記:()S結(jié)結(jié)論論歸歸納納8重點輔導tan()1tantantantan 應(yīng)用應(yīng)用 小結(jié)小結(jié) 探究探究 引入引入兩角和的正切公式:兩角和的正切公式:s si in nc co os s+c co os ss si in nc co os sc co os s-
4、s si in ns si in ns si in n(+)c co os s(+)coscos0當時,coscos分子分母同時除以tan()()記:+T Ttantan tantantan(tan()=)=1 tan1 tan+-tantan公公式式推推導導9重點輔導 應(yīng)用應(yīng)用 小結(jié)小結(jié) 探究探究 引入引入上式中以上式中以代代 得得 tantan()tan()1tantan()t ta an n-t ta an n=1 1+t ta an nt ta an n()記-T Ttantan tantantan(tan()=)=1 tan1 tan+-tantantantan tantantan(
5、tan()=)=1 tan1 tan-+tantan公公式式推推導導tantan tantantan(tan()=)=1 tan1 tan+-tantan10重點輔導 應(yīng)用應(yīng)用 小結(jié)小結(jié) 探究探究 引入引入注意:必須在定義域范圍內(nèi)使用上述公式。即:tan,tan,tan()只要有一個不存在就不能使用這個公式,只能(也只需)用誘導公式來解。如:已知tan =2,求 不能用 tan()2()T兩角和與差的正切公式兩角和與差的正切公式tantan tantantan(tan()=)=1 tan1 tantantan記記:()T T結(jié)結(jié)論論歸歸納納11重點輔導 應(yīng)用應(yīng)用 小結(jié)小結(jié) 探究探究 引入引入遇
6、到 這類計算時,怎么辦?tan()2)2tan(注意注意)2cos()2sin(sincostan112重點輔導 應(yīng)用應(yīng)用 小結(jié)小結(jié) 探究探究 引入引入t ta an n+t ta an n=t ta an n(+)(1 1-t ta an nt ta an n)t ta an n-t ta an n=t ta an n(-)(1 1+t ta an nt ta an n)兩角和與差的正切公式兩角和與差的正切公式變形:變形:公公式式變變形形tantan tantantan(tan()=)=1 tan1 tan+-tantantantan tantantan(tan()=)=1 tan1 tan
7、-+tantan13重點輔導 探究探究 小結(jié)小結(jié) 應(yīng)用應(yīng)用 引入引入例例1 1 不查表求下列各式的值不查表求下列各式的值(1 1)s si in n1 15 5cos(2 2)1 15 5tan(3 3)1 15 5(4 4)s si in n1 10 05 5cos(5 5)1 10 05 5tan(6 6)1 10 05 56242362426462423公公式式正正用用14重點輔導 探究探究 小結(jié)小結(jié) 應(yīng)用應(yīng)用 引入引入例例2 2已知已知 ,是第四象限角,是第四象限角,求求 ,的值的值.53si n)4si n()4cos(tan()4pa-公公式式正正用用15重點輔導3sin,5解:由
8、是第四象限角得:,54)53(1sin1cos22sin3tan.cos4 探究探究 小結(jié)小結(jié) 應(yīng)用應(yīng)用 引入引入于是有)4sin(;1027)53(225422sin4coscos4sin3sin5,例例2:已知已知是第四象限角是第四象限角,求求sin(),cos(),tan()44416重點輔導 探究探究 小結(jié)小結(jié) 應(yīng)用應(yīng)用 引入引入)4cos(;1027)53(225422sin4sincos4cos)4tan(7)43(11434tantan14tantantan11tan3sin5,例例2:已知已知是第四象限角是第四象限角,求求sin(),cos(),tan()44417重點輔導 探
9、究探究 小結(jié)小結(jié) 應(yīng)用應(yīng)用 引入引入公公式式逆逆用用tan45tan151tan45 tan151tan151tan15(1)sin72 cos42cos72 sin42(2)sin30 coscos30 sin13(3)cossin22(4)cos3sin(5)(6)xxxxxx例例3 3 利用和(差)角公式化簡下列各式利用和(差)角公式化簡下列各式 12sin(30)oxsin(30)ox2sin(30)ox3318重點輔導 探究探究 小結(jié)小結(jié) 應(yīng)用應(yīng)用 引入引入練習練習:已知公公式式變變形形用用)()tan(2tan)tan()tan(1)tan()tan(4;7)()tan(2tan同
10、理81-tan()=3 tan()5,tan2tan2求的值,2 2=+(+)變角變角:分析:分析:三角函數(shù)中一定要注意觀察角三角函數(shù)中一定要注意觀察角度之間的關(guān)系,例如度之間的關(guān)系,例如2+-2-()()=+=+19重點輔導2sin3sin3,2cos3cos4cos().已已知知求求的的值值 22(1)(2)os).:c(構(gòu)造分析22(2sin3sin)(2cos3cos)251312(coscossinsin)25cos()1 解解:探究探究 小結(jié)小結(jié) 應(yīng)用應(yīng)用 引入引入公式變形用公式變形用20重點輔導 應(yīng)用應(yīng)用 探究探究 小結(jié)小結(jié) 引入引入2.2.公式應(yīng)用公式應(yīng)用1.1.公式推導公式推導C C(-)S S(-)誘導誘導公式公式換元換元C C()S S(+)誘導誘導公式公式T T(+)弦切關(guān)系弦切關(guān)系課堂小結(jié):課堂小結(jié):(轉(zhuǎn)化貫穿始終轉(zhuǎn)化貫穿始終,換元靈活運用換元靈活運用)公式正用公式正用公式逆用公式逆用公式變形用公式變形用T T(+)弦切關(guān)系弦切關(guān)系 換元換元21重點輔導