雙連桿機(jī)械臂動力學(xué)參數(shù)估計模型

上傳人:冷*** 文檔編號:18232490 上傳時間:2020-12-25 格式:DOCX 頁數(shù):6 大小:13.94KB
收藏 版權(quán)申訴 舉報 下載
雙連桿機(jī)械臂動力學(xué)參數(shù)估計模型_第1頁
第1頁 / 共6頁
雙連桿機(jī)械臂動力學(xué)參數(shù)估計模型_第2頁
第2頁 / 共6頁
雙連桿機(jī)械臂動力學(xué)參數(shù)估計模型_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

15 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《雙連桿機(jī)械臂動力學(xué)參數(shù)估計模型》由會員分享,可在線閱讀,更多相關(guān)《雙連桿機(jī)械臂動力學(xué)參數(shù)估計模型(6頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、雙連桿機(jī)械臂動力學(xué)參數(shù)估計模型   摘 要:該文描述了出現(xiàn)在雙連桿機(jī)械臂動態(tài)參數(shù)模型中的問題,并對其性能進(jìn)行了評估。創(chuàng)建了機(jī)械臂的運(yùn)動模型,連接在絕對空間中鏈接位移與夾持器中心位置,解決了鏈接位置的正向運(yùn)動問題。同時得到一組非線性函數(shù),建立了機(jī)械臂的廣義坐標(biāo)和笛卡爾坐標(biāo)之間的連接。使用Denavit-Hartenberg方法對運(yùn)動鏈進(jìn)行編碼。作為解決逆運(yùn)動學(xué)問題的結(jié)果,獲得一個給定的位置和夾持器輸出鏈路方向的廣義坐標(biāo)方程系統(tǒng)。在數(shù)學(xué)軟件MATLAB(Simulink)中分析得到系統(tǒng)動力學(xué)的模型。該文的結(jié)論通過數(shù)學(xué)實(shí)驗(yàn)進(jìn)行證實(shí)。

2、  關(guān)鍵詞:雙連桿機(jī)械臂 運(yùn)動鏈 動態(tài)模型   根據(jù)設(shè)計的機(jī)器人的指定技術(shù)特點(diǎn)與必要性來提供所需要的動態(tài)性能,系統(tǒng)性能,并且給定重放軌跡運(yùn)動的精度,運(yùn)動的穩(wěn)定性。實(shí)現(xiàn)所期望性能的一種方式是在機(jī)器人設(shè)計和配置時使用機(jī)器人仿真。   仿真方法可以通過減少在概念設(shè)計階段找到解決方案的迭代次數(shù),從而顯著縮短設(shè)計時間。在機(jī)器人系統(tǒng)流程過程中建??梢垣@得等效信號,操作機(jī)器人;考慮各種因素對機(jī)器人和它各單位的影響;計算其穩(wěn)定性、速度、精度;優(yōu)化單獨(dú)的模塊與整個機(jī)器人系統(tǒng)作為一個整體?,F(xiàn)代機(jī)器人系統(tǒng)的動力學(xué)建模方法涉及建立真正的機(jī)器人運(yùn)動學(xué)和動力學(xué)適當(dāng)?shù)臄?shù)學(xué)模型。   機(jī)器人動力

3、學(xué)模型不僅可以計算它的設(shè)計特性,還可以計算其速度(時間控制),動態(tài)過程的性質(zhì)(單調(diào)性,非周期性,和振蕩)。   研究過程中對機(jī)械臂的操作是必要的,首先,使它成為一個運(yùn)動模型,即一個模型連接它與絕對空間中的夾持器的中心位置的位移的鏈接[1-2]。   指定在三維空間中點(diǎn)的位置就足以確定其在絕對(固定)坐標(biāo)系統(tǒng)中的坐標(biāo)。描述一個剛體需要與它自己(相關(guān)的)坐標(biāo)系相結(jié)合。   在國際實(shí)踐中普遍使用的方法是基于對Denavit-Hartenberg坐標(biāo)系的采用[3]。目前的工作是致力于在雙連桿機(jī)械臂的動態(tài)過程建模。   1 機(jī)械臂運(yùn)動學(xué)   分析組成機(jī)械

4、臂的兩個鏈接:關(guān)于一個廣義坐標(biāo)的垂直軸線旋轉(zhuǎn)鏈接和沿水平軸偏移的一個廣義鏈路坐標(biāo)。這些坐標(biāo)位移決定了機(jī)械臂的位置。為了描述機(jī)械臂運(yùn)動學(xué)問題必須要解決正、逆運(yùn)動學(xué)問題。   這些任務(wù)的解決方案用于機(jī)械臂工作區(qū)的建設(shè)。另外,由此產(chǎn)生的方程組是隨后的處理運(yùn)動任務(wù)的起點(diǎn)。解決方案是一組建立機(jī)械臂廣義坐標(biāo)與笛卡爾坐標(biāo)之間聯(lián)系的非線性函數(shù)。圖1顯示了該機(jī)械臂的運(yùn)動學(xué)。   采用Denavit-Hartenberg方法編碼運(yùn)動鏈。然后建立對機(jī)械臂的運(yùn)動學(xué)正問題的絕對和相對坐標(biāo)形式的約束方程:   -在一般形式上   -與特定的值   因此:   獲

5、得機(jī)械臂的運(yùn)動方程:   鏈接1:   鏈接2:   獲得擴(kuò)展鏈路的整體速度:   逆運(yùn)動學(xué)問題是確定一個給定位置和它的輸出鏈路定位(夾具)的機(jī)器人的廣義坐標(biāo)[4-5]。有多種方法用于求解逆運(yùn)動學(xué)問題,但大多數(shù)是與超越方程系統(tǒng)的解相關(guān)。   讓我們用三角法來解決這一問題。   從方程組發(fā)現(xiàn)后,針對這種劃分獲得   顯然,在第一連桿的旋轉(zhuǎn)角度可以被定義為   For to find the use identity ,thenobtain:,obvious that ,then finally get ,hence.

6、   查找使用的身份,進(jìn)而獲得:,顯而易見的是,最終得到了想要的結(jié)果,因此。   其結(jié)果是,我們得到一個廣義坐標(biāo)方程系統(tǒng):   隨時間變化的變量集,設(shè)置唯一標(biāo)識的機(jī)器人連桿的相對位置。因此,機(jī)械系統(tǒng)的配置稱為廣義坐標(biāo)。在完整力學(xué)系統(tǒng)中一些廣義坐標(biāo)的n等于自由度的數(shù)目。   2 機(jī)械臂動力學(xué)   研究人員對機(jī)器人動力學(xué)有著極大的興趣。當(dāng)導(dǎo)出機(jī)器人動力學(xué)方程的解析形式時可以用拉格朗日或者阿佩爾形式進(jìn)行描述。在正式說明的情況下,拉格朗日需要對動能和廣義力推導(dǎo)出解析表達(dá)式,在使用形式化描述阿佩爾的情況下―能量,加速度,和轉(zhuǎn)化的廣義力。確定必要的動能,在

7、一般情況下,為了確定質(zhì)量速度的構(gòu)成系統(tǒng)和固體角速度矢量實(shí)心體的中心剛體的動能在絕對坐標(biāo)系的變換下是不發(fā)生改變的。   這使我們能夠獲得慣性張量的變換公式之交   一旦將每個環(huán)節(jié)的動能進(jìn)行描述解析,找到整個系統(tǒng)的總動能很重要:   找到的每一個鏈接的動能:   各鏈接的轉(zhuǎn)動慣量:   讓我們假設(shè)   經(jīng)過變換和替換得到   獲取拉格朗日方程的每一個環(huán)節(jié)。區(qū)分系統(tǒng)的總動能交替關(guān)于。   該操作的結(jié)果是,我們得到了各鏈接下面的等式:   鏈接1:   鏈接2:   (1)   結(jié)合

8、系統(tǒng)得出方程:   (2)   柯西變換結(jié)果系統(tǒng)的一般形式,替代:   (3)   3 模擬分析   分析所得的方程系統(tǒng),在MATLAB特別是在其組件Simulink中建立一個數(shù)學(xué)工程的系統(tǒng)動力學(xué)模型。圖2表示的是一個由柯西的正常形式的方程得到的一個系統(tǒng)動態(tài)模型。該模型是通用的,可用于參數(shù)不同的確定質(zhì)量和尺寸的機(jī)械臂的機(jī)器人的研究。建模的目的是確定其發(fā)生過程的動作速度和性質(zhì),確認(rèn)機(jī)械臂關(guān)節(jié)耦合(在同步運(yùn)動)及速度和轉(zhuǎn)速的行為。   在建模過程中已經(jīng)使用下列參數(shù):重量負(fù)載-,一個夾持器的延伸速度-,繞垂直軸旋轉(zhuǎn)的速度-,其余參數(shù)在建模過

9、程中進(jìn)行計算。   根據(jù)對模型的研究結(jié)果顯示,進(jìn)行定性評估。   建模:   對旋轉(zhuǎn)模塊;   對機(jī)械臂的擴(kuò)展模塊。   瞬態(tài)過沖:   靜態(tài)誤差值:   過渡過程中的上升時間:   。   得到的定性評估結(jié)果相當(dāng)接近于具有適當(dāng)質(zhì)量和尺寸和參數(shù)的雙連桿機(jī)器人的試驗(yàn)評估。評估結(jié)果表明,該模型在評估有另一個處理重量和力-速度特性的類似機(jī)器人動態(tài)參數(shù)時十分有效。   4 結(jié)語   因此,建立的雙連桿機(jī)器人模型允許評估他們在這個模式下的行動速度,產(chǎn)生的性質(zhì),確定在他們同步運(yùn)動時的關(guān)節(jié)耦合時刻。   參考文獻(xiàn)   [1] Zenkevich S.L.,Yushchenko A.S., Fundamentals of robotic manipulator control[M].Moscow,2ed,2004.   [2] Pshihopov V.H.,Time-optimal trajectory control of electromechanical robotic manipulator[J].Electromechanics,2007(1):51-57.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!