信息檢索六tfidf

上傳人:奇*** 文檔編號(hào):253393261 上傳時(shí)間:2024-12-12 格式:PPT 頁(yè)數(shù):47 大?。?07.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
信息檢索六tfidf_第1頁(yè)
第1頁(yè) / 共47頁(yè)
信息檢索六tfidf_第2頁(yè)
第2頁(yè) / 共47頁(yè)
信息檢索六tfidf_第3頁(yè)
第3頁(yè) / 共47頁(yè)

下載文檔到電腦,查找使用更方便

28 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《信息檢索六tfidf》由會(huì)員分享,可在線閱讀,更多相關(guān)《信息檢索六tfidf(47頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、單擊此處編輯母版標(biāo)題樣式,單擊此處編輯母版文本樣式,第二級(jí),第三級(jí),第四級(jí),第五級(jí),*,互聯(lián)網(wǎng)信息搜索,湖南大學(xué)計(jì)算機(jī)與通信學(xué)院,劉鈺峰,互聯(lián)網(wǎng)信息搜索六,tfidf and,vector spaces,回顧,1、中文分詞,2、詞典壓縮,3、posting list壓縮,4、tfidf,Scoring documents,How do we construct an index?,What strategies can we use with limited main memory?,Scoring,We wish to return in order the documents most l

2、ikely to be useful to the searcher,How can we rank order the docs in the corpus with respect to a query?,Assign a score say in 0,1,for each doc on each query,Begin with a perfect world no spammers,Nobody stuffing keywords into a doc to make it match queries,More on“adversarial IR”under web search,Li

3、near zone combinations,First generation of scoring methods:use a linear combination of Booleans:,E.g.,Score=0.6*,+0.3*+0.05*+0.05*,Each expression such as takes on a value in 0,1.,Then the overall score is in 0,1.,For this example the scores can only take,on a finite set of values what are they?,Exe

4、rcise,On the query,bill,OR,rights,suppose that we retrieve the following docs from the various zone indexes:,bill,rights,bill,rights,bill,rights,Author,Title,Body,1,5,2,8,3,3,5,9,2,5,1,5,8,3,9,9,Compute the score,for each doc based on the weightings 0.6,0.3,0.1,General idea,We are given a,weight vec

5、tor,whose components sum up to 1.,There is a weight for each zone/field.,Given a Boolean query,we assign a score to each doc by adding up the weighted contributions of the zones/fields.,Typically users want to see the,K,highest-scoring docs.,Index support for zone combinations,In the simplest versio

6、n we have a separate inverted index for each zone,Variant:have a single index with a separate dictionary entry for each term and zone,E.g.,bill.author,bill.title,bill.body,1,2,5,8,3,2,5,1,9,Of course,compress zone names,like author/title/body.,Zone combinations index,The above scheme is still wastef

7、ul:each term is potentially replicated for each zone,In a slightly better scheme,we encode the zone in the postings:,At query time,accumulate contributions to the total score of a document from the various postings,e.g.,bill,1.author,1.body,2.author,2.body,3.title,As before,the zone names get compre

8、ssed.,bill,1.author,1.body,2.author,2.body,3.title,rights,3.title,3.body,5.title,5.body,Score accumulation,As we walk the postings for the query,bill,OR,rights,we accumulate scores for each doc in a linear merge as before.,Note:we get,both,bill,and,rights,in the,Title,field of doc 3,but score it no

9、higher.,Should we give more weight to more hits?,1,2,3,5,0.7,0.7,0.4,0.4,Term-document count matrices,Consider the number of occurrences of a term in a document:,Bag of words,model,Document is a vector:a column below,Bag of words view of a doc,Thus the doc,John is quicker than Mary,.,is indistinguis

10、hable from the doc,Mary is quicker than John,.,Which of the indexes discussed,so far distinguish these two docs?,Counts vs.frequencies,WARNING,:In a lot of IR literature,“frequency”is used to mean“count”,Thus,term frequency,in IR literature is used to mean,number of occurrences,in a doc,Not,divided

11、by document length(which would actually make it a frequency),We will conform to this misnomer,In saying,term frequency,we mean the,number of occurrences,of a term in a document.,Term frequency,tf,Long docs are favored,because theyre more likely to contain query terms,Can fix this to some extent by n

12、ormalizing for document length,But is raw,tf,the right measure?,Document frequency,But document frequency(,df,)may be better:,df,=number of docs in the corpus containing the term,Word,cf,df,ferrari,1042217,insurance,104403997,Document/collection frequency weighting is only possible in known(static)c

13、ollection.,So how do we make use of,df,?,tf x idf term weights,tf x idf measure combines:,term frequency(,tf,),or,wf,some measure of term density in a doc,inverse document frequency(,idf,),measure of informativeness of a term:its rarity across the whole corpus,could just be raw count of number of do

14、cuments the term occurs in(,idf,i,=,1/,df,i,),but by far the most commonly used version is:,See Kishore Papineni,NAACL 2,2002 for theoretical justification,Summary:tf x idf(or tf.idf),Assign a tf.idf weight to each term,i,in each document,d,Increases with the number of occurrences,within,a doc,Incre

15、ases with the rarity of the term,across,the whole corpus,再論TF,Real-valued term-document matrices,Function(scaling)of count of a word in a document:,Bag of words,model,Each is a vector in,v,Here log-scaled,tf.idf,Note can be 1!,Documents as vectors,Each doc,j,can now be viewed as a vector of,wf,idf,v

16、alues,one component for each term,So we have a vector space,terms are axes,docs live in this space,even with stemming,may have 20,000+dimensions,(The corpus of documents gives us a matrix,which we could also view as a vector space in which words live transposable data),Why turn docs into vectors?,First application:Query-by-example,Given a doc,d,find others“l(fā)ike”it.,Now that,d,is a vector,find vectors(docs)“near”it.,Intuition,Postulate:Documents that are“close together”,in the vector space talk a

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔

相關(guān)搜索

關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!