高中數(shù)學(xué) 專題強化訓(xùn)練1 解三角形 新人教A版必修5

上傳人:仙*** 文檔編號:38430594 上傳時間:2021-11-07 格式:DOC 頁數(shù):6 大?。?5KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué) 專題強化訓(xùn)練1 解三角形 新人教A版必修5_第1頁
第1頁 / 共6頁
高中數(shù)學(xué) 專題強化訓(xùn)練1 解三角形 新人教A版必修5_第2頁
第2頁 / 共6頁
高中數(shù)學(xué) 專題強化訓(xùn)練1 解三角形 新人教A版必修5_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 專題強化訓(xùn)練1 解三角形 新人教A版必修5》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 專題強化訓(xùn)練1 解三角形 新人教A版必修5(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 專題強化訓(xùn)練(一) 解三角形 (建議用時:45分鐘) [學(xué)業(yè)達標練] 一、選擇題 1.在△ABC中,若a=7,b=3,c=8,則其面積等于(  ) A.12         B. C.28 D.6 D [由余弦定理得cos A===,所以sin A=,則S△ABC=bcsin A=×3×8×=6.] 2.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.若3a=2b,則的值為(  ) 【導(dǎo)學(xué)號:91432094】 A. B. C.1 D. D [由正弦定理可得===.] 3.在△ABC中,已知AB=2,BC=5,△A

2、BC的面積為4,若∠ABC=θ,則cos θ等于(  ) A. B.- C.± D.± C [∵S△ABC=AB·BCsin∠ABC=×2×5×sin θ=4.∴sin θ=.又θ∈(0,π),∴cos θ=±=±.] 4.某人從出發(fā)點A向正東走x m后到B,向左轉(zhuǎn)150°再向前走3 m到C,測得△ABC的面積為 m2,則此人這時離開出發(fā)點的距離為(  ) 【導(dǎo)學(xué)號:91432095】 A.3 m B. m C.2 m D. m D [在△ABC中,S=AB×

3、BCsin B, ∴=×x×3×sin 30°,∴x=. 由余弦定理, 得AC= ==(m).] 5.在△ABC中,A=60°,AB=2,且△ABC的面積S△ABC=,則邊BC的長為(  ) A. B.3 C. D.7 A [∵S△ABC=AB·ACsin A=,∴AC=1,由余弦定理可得BC2=AB2+AC2-2AB·ACcos A=4+1-2×2×1×cos 60°=3,即BC=.] 二、填空題 6.在△ABC中,B=60°,b2=ac,則△A

4、BC的形狀為________. 【導(dǎo)學(xué)號:91432096】 等邊三角形 [由余弦定理得b2=a2+c2-2accos B,即ac=a2+c2-ac, ∴(a-c)2=0,∴a=c.又∵B=60°,△ABC為等邊三角形.] 7.在△ABC中,a=b+2,b=c+2,又知最大角的正弦等于,則三邊長為________. a=7,b=5,c=3 [由題意知a邊最大,sin A=,∴A=120°, ∴a2=b2+c2-2bccos A. ∴a2=(a-2)2+(a-4)2+(a-2)(a-4). ∴a2-9a+14=0,解得a=2(舍去)或a=7. ∴b=a-2

5、=5,c=b-2=3.] 8.已知三角形ABC的三邊為a,b,c和面積S=a2-(b-c)2,則cos A=________. 【導(dǎo)學(xué)號:91432097】  [由已知得S=a2-(b-c)2=a2-b2-c2+2bc =-2bccos A+2bc. 又S=bcsin A,∴bcsin A=2bc-2bccos A. ∴4-4cos A=sin A,平方得17cos2A-32cos A+15=0. ∴(17cos A-15)(cos A-1)=0. ∴cos A=1(舍去)或cos A=.] 三、解答題 9.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c.已知cos

6、A=,sin B=cos C. (1)求tan C的值; (2)若a=,求△ABC的面積. [解] (1)因為0<A<π,cos A=, 所以sin A==, 又cos C=sin B=sin(A+C)=sin Acos C+cos Asin C=cos C+ sinC, 所以cos C=sin C,tan C=. (2)由tan C=得sin C=,cos C=,于是sin B=cos C=. 由a=及正弦定理=得c=,所以△ABC的面積S△ABC=acsin B=×××=. 10.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,

7、已知2cos C·(acos B+bcos A)=c. (1)求C; (2)若c=,△ABC的面積為,求△ABC的周長. 【導(dǎo)學(xué)號:91432098】 [解] (1)由已知及正弦定理得 2cos C(sin Acos B+sin Bcos A)=sin C, 即2cos Csin(A+B)=sin C, 故2sin Ccos C=sin C. 可得cos C=,所以C=. (2)由已知得absin C=. 又C=,所以ab=6. 由已知及余弦定理得a2+b2-2abcos C=7, 故a2+b2=13,從而(a+b)2=25. 所以△ABC的周長為5+.

8、 [沖A挑戰(zhàn)練] 1.設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若bcos C+ccos B=asin A,則△ABC的形狀為(  ) A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不確定 B [∵bcos C+ccos B=b·+c·===a=asin A, ∴sin A=1. ∵A∈(0,π), ∴A=,即△ABC是直角三角形.] 2.鈍角三角形ABC的面積是,AB=1,BC=,則AC=(  ) 【導(dǎo)學(xué)號:91432099】 A.5 B. C.2 D.1 B [∵S=AB·BCsin B=×1

9、×sin B=, ∴sin B=,∴B=或. 當B=時,根據(jù)余弦定理有AC2=AB2+BC2-2AB·BC·cos B=1+2+2=5,∴AC=,此時△ABC為鈍角三角形,符合題意; 當B=時,根據(jù)余弦定理有AC2=AB2+BC2-2AB·BC·cos B=1+2-2=1,∴AC=1,此時AB2+AC2=BC2,△ABC為直角三角形,不符合題意.故AC=.] 3.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若cos A=,cos C=,a=1,則b=________.  [因為A,C為△ABC的內(nèi)角,且cos A=,cos C=,

10、 所以sin A=,sin C=, 所以sin B=sin(π-A-C)=sin(A+C)=sin Acos C+cos Asin C=×+×=. 又a=1,所以由正弦定理得b===×=.] 4.如圖1­5,從氣球A上測得正前方的河流的兩岸B,C的俯角分別是67°,30°,此時氣球的高是46 m,則河流的寬度BC約等于________m.(用四舍五入法將結(jié)果精確到個位.參考數(shù)據(jù):sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,≈1.

11、73) 【導(dǎo)學(xué)號:91432100】 圖1­5 60 [根據(jù)已知的圖形可得AB=.在△ABC中,∠BCA=30°,∠BAC=37°,由正弦定理,得=,所以BC≈2××0.60=60(m).] 5.在△ABC中,設(shè)角A,B,C的對邊分別為a,b,c,已知cos2A=sin2B+cos2C+sin Asin B. (1)求角C的大??; (2)若c=,求△ABC周長的取值范圍. [解] (1)由題意知1-sin2A=sin2B+1-sin2C+sin Asin B, 即sin2A+sin2 B-sin2C=-sin Asin B

12、, 由正弦定理得a2+b2-c2=-ab, 由余弦定理得cos C===-, 又∵0<C<π,∴C=. (2)由正弦定理得===2, ∴a=2sin A,b=2sin B, 則△ABC的周長為L=a+b+c=2(sin A+sin B)+=2+ =2sin+. ∵0<A<,∴<A+<, ∴<sin≤1, ∴2<2sin+≤2+, ∴△ABC周長的取值范圍是(2,2+]. 我國經(jīng)濟發(fā)展進入新常態(tài),需要轉(zhuǎn)變經(jīng)濟發(fā)展方式,改變粗放式增長模式,不斷優(yōu)化經(jīng)濟結(jié)構(gòu),實現(xiàn)經(jīng)濟健康可持續(xù)發(fā)展進區(qū)域協(xié)調(diào)發(fā)展,推進新型城鎮(zhèn)化,推動城鄉(xiāng)發(fā)展一體化因:我國經(jīng)濟發(fā)展還面臨區(qū)域發(fā)展不平衡、城鎮(zhèn)化水平不高、城鄉(xiāng)發(fā)展不平衡不協(xié)調(diào)等現(xiàn)實挑戰(zhàn)。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!