高考數(shù)學(xué)理二輪復(fù)習(xí)教師用書:第1部分 重點強化專題 專題4 第9講 空間中的平行與垂直關(guān)系 Word版含答案

上傳人:仙*** 文檔編號:40293182 上傳時間:2021-11-15 格式:DOC 頁數(shù):12 大?。?60.50KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學(xué)理二輪復(fù)習(xí)教師用書:第1部分 重點強化專題 專題4 第9講 空間中的平行與垂直關(guān)系 Word版含答案_第1頁
第1頁 / 共12頁
高考數(shù)學(xué)理二輪復(fù)習(xí)教師用書:第1部分 重點強化專題 專題4 第9講 空間中的平行與垂直關(guān)系 Word版含答案_第2頁
第2頁 / 共12頁
高考數(shù)學(xué)理二輪復(fù)習(xí)教師用書:第1部分 重點強化專題 專題4 第9講 空間中的平行與垂直關(guān)系 Word版含答案_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)理二輪復(fù)習(xí)教師用書:第1部分 重點強化專題 專題4 第9講 空間中的平行與垂直關(guān)系 Word版含答案》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)理二輪復(fù)習(xí)教師用書:第1部分 重點強化專題 專題4 第9講 空間中的平行與垂直關(guān)系 Word版含答案(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5 第9講 空間中的平行與垂直關(guān)系 題型1 空間位置關(guān)系的判斷與證明 (對應(yīng)學(xué)生用書第30頁) ■核心知識儲備………………………………………………………………………· 1.直線、平面平行的判定及其性質(zhì) (1)線面平行的判定定理:a?α,b?α,a∥b?a∥α. (2)線面平行的性質(zhì)定理:a∥α,a?β,α∩β=b?a∥b. (3)面面平行的判定定理:a?β,b?β,a∩b=P,a∥α,b∥α?α∥β. (4)面面平行的性質(zhì)定理:α∥β,α∩γ=a,β∩γ=b?a∥

2、b. 2.直線、平面垂直的判定及其性質(zhì) (1)線面垂直的判定定理:m?α,n?α,m∩n=P,l⊥m,l⊥n?l⊥α. (2)線面垂直的性質(zhì)定理:a⊥α,b⊥α?a∥b. (3)面面垂直的判定定理:a?β,a⊥α?α⊥β. (4)面面垂直的性質(zhì)定理:α⊥β,α∩β=l,a?α,a⊥l?a⊥β. ■典題試解尋法………………………………………………………………………· 【典題1】 (考查空間位置關(guān)系的判斷)已知m,n為異面直線,m⊥平面α,n⊥平面β.直線l滿足l⊥m,l⊥n,l?α,l?β,則(  ) A.α∥β且l∥α B.α⊥β且l⊥β C.α與β相交,且交線垂

3、直于l D.α與β相交,且交線平行于l [解析] 根據(jù)所給的已知條件作圖,如圖所示. 由圖可知α與β相交,且交線平行于l,故選D. [答案] D 【典題2】 (考查空間位置關(guān)系的證明)如圖9­1,在三棱錐P­ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點. 圖9­1 (1)求證:PA⊥BD; (2)求證:平面BDE⊥平面PAC; (3)當(dāng)PA∥平面BDE時,求三棱錐E­BCD的體積. [思路分析] (1)通過證明PA⊥平面ABC得PA⊥BD; (2)通過證明BD⊥平面P

4、AC得面面垂直; (3)由PA∥平面BDE,D為AC的中點得PA與DE的位置及數(shù)量關(guān)系,從而求出三棱錐的體積. [解] (1)證明:因為PA⊥AB,PA⊥BC,且AB∩BC=B,所以PA⊥平面ABC. 又因為BD?平面ABC,所以PA⊥BD. (2)證明:因為AB=BC,D為AC的中點,所以BD⊥AC. 由(1)知,PA⊥BD,且PA∩AC=A, 所以BD⊥平面PAC, 所以平面BDE⊥平面PAC. (3)因為PA∥平面BDE,平面PAC∩平面BDE=DE,所以PA∥DE. 因為D為AC的中點, 所以DE=PA=1,BD=DC=. 由(1)知,PA⊥平面ABC,所以DE⊥

5、平面ABC, 所以三棱錐E­BCD的體積V=BD·DC·DE=. [類題通法] 平行關(guān)系及垂直關(guān)系的轉(zhuǎn)化 空間平行、垂直關(guān)系證明的主要思想是轉(zhuǎn)化,即通過判定定理、性質(zhì)定理將線線、線面、面面之間的平行、垂直關(guān)系相互轉(zhuǎn)化. ■對點即時訓(xùn)練………………………………………………………………………· 如圖9­2所示,四棱錐P­ABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=AD=. 圖9­2 (1)求證:平面PAB⊥平面PCD; (2)求三棱錐D­PBC的

6、體積. 【導(dǎo)學(xué)號:07804065】 [解] (1)法一:(幾何法)因為平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD, 又CD⊥AD,所以CD⊥平面PAD,所以CD⊥PA. 因為PA=PD=AD,所以△PAD是等腰直角三角形,且∠APD=,即PA⊥PD. 又CD∩PD=D,所以PA⊥平面PCD. 又PA?平面PAB,所以平面PAB⊥平面PCD. 法二:(向量法)取AD的中點O、BC的中點Q,連接OP,OQ,易知OQ⊥AD. 因為PA=PD,所以PO⊥AD, 因為平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD, 所以PO⊥平面ABCD. 建立如圖所示

7、的空間直角坐標(biāo)系. 由PA=PD=AD=,知OP=1. 則O(0,0,0),A(1,0,0),B(1,2,0),Q(0,2,0),C(-1,2,0),D(-1,0,0),P(0,0,1). 設(shè)平面PCD的法向量為n=(x,y,z), 又=(0,2,0),=(1,0,1), 則 即 令x=1,則n=(1,0,-1). 同理,可求得平面PAB的一個法向量為m=(-1,0,-1), 又n·m=-1×1+0×0+(-1)×(-1)=0, 故平面PAB⊥平面PCD. (2)取AD的中點O,連接OP,如圖. 因為PA=PD,所以PO⊥AD.

8、 因為平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD, 所以PO⊥平面ABCD. 即PO為三棱錐P­BCD的高, 由PA=PD=AD=,知OP=1. 因為底面ABCD是正方形,所以S△BCD=×2×2=2. 所以V三棱錐D­PBC=V三棱錐P­BCD=PO·S△BCD=×1×2=. ■題型強化集訓(xùn)………………………………………………………………………· (見專題限時集訓(xùn)T1、T3、T6、T7、T8、T9、T10、T12、T14) 題型2 平面圖形的翻折問題 (對應(yīng)學(xué)生用書第31

9、頁) ■核心知識儲備………………………………………………………………………· 翻折問題的注意事項 (1)畫好兩圖:翻折之前的平面圖形與翻折之后形成的幾何體的直觀圖. (2)把握關(guān)系:即比較翻折前后的圖形,準(zhǔn)確把握平面圖形翻折前后的線線關(guān)系,哪些平行與垂直的關(guān)系不變,哪些平行與垂直的關(guān)系發(fā)生變化,這是準(zhǔn)確把握幾何體結(jié)構(gòu)特征,進行空間線面關(guān)系邏輯推理的基礎(chǔ). (3)準(zhǔn)確定量:即根據(jù)平面圖形翻折的要求,把平面圖形中的相關(guān)數(shù)量轉(zhuǎn)化為空間幾何體的數(shù)字特征,這是進行準(zhǔn)確計算的基礎(chǔ). ■典題試解尋法………………………………………………………………………· 【典題】 (20x

10、x·全國Ⅱ卷)如圖9­3,菱形ABCD的對角線AC與BD交于點O,AB=5,AC=6,點E,F(xiàn)分別在AD,CD上,AE=CF=,EF交BD于點H.將△DEF沿EF折到△D′EF的位置,OD′=. 圖9­3 (1)證明:D′H⊥平面ABCD; (2)求二面角B­D′A­C的正弦值. [思路分析] (1)題設(shè)條件翻折,D′H⊥EFD′H⊥OH―→D′H⊥平面ABCD; (2)建系―→求法向量―→求二面角的余弦值―→求二面角的正弦值. [解] (1)證明:由已知得AC⊥BD,AD=CD. 又由AE=CF得=, 故AC∥EF. 因

11、為EF⊥HD,從而EF⊥D′H. 由AB=5,AC=6得DO=BO==4. 由EF∥AC得==. 所以O(shè)H=1,D′H=DH=3. 于是D′H2+OH2=32+12=10=D′O2,故D′H⊥OH. 又D′H⊥EF,而OH∩EF=H,所以D′H⊥平面ABCD. (2)如圖,以H為坐標(biāo)原點,的方向為x軸正方向,建立空間直角坐標(biāo)系H­xyz,則H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D′(0,0,3), =(3,-4,0),=(6,0,0),=(3,1,3). 設(shè)m=(x1,y1,z1)是平面ABD′的法向量,則 即 所以可取m

12、=(4,3,-5). 設(shè)n=(x2,y2,z2)是平面ACD′的法向量,則 即 所以可取n=(0,-3,1). 于是cos〈m,n〉===-. sin〈m,n〉=. 因此二面角B­D′A­C的正弦值是. [類題通法]  平面圖形翻折問題的求解方法 (1)解決與折疊有關(guān)的問題的關(guān)鍵是搞清折疊前后的變和不變,一般情況下,線段的長度是不變量,而位置關(guān)系往往會發(fā)生變化,抓住不變量是解決問題的突破口. (2)在解決問題時,要綜合考慮折疊前后的圖形,既要分析折疊后的圖形,也要分析折疊前的圖形. ■對點即時訓(xùn)練……………………………………………………………

13、…………· 如圖9­4(1),在四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,E,F(xiàn)分別在BC,AD上,EF∥AB,現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF⊥平面EFDC,如圖9­4(2). 圖9­4(1) 圖9­4(2) (1)若BE=1,在折疊后的線段AD上是否存在一點P,且=λ,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,請說明理由; (2)求三棱錐A­CDF體積的最大值,并求此時二面角E­AC­F的余弦值. 【導(dǎo)學(xué)號:07804066】 [解] 

14、因為平面ABEF⊥平面EFDC,平面ABEF∩平面EFDC=EF,F(xiàn)D⊥EF, 所以FD⊥平面ABEF. 又AF?平面ABEF,所以FD⊥AF. 易知AF⊥EF,又FD∩EF=F, 所以AF⊥平面EFDC. (1)以F為坐標(biāo)原點,F(xiàn)E,F(xiàn)D,F(xiàn)A所在直線分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系. 則F(0,0,0),A(0,0,1),D(0,5,0),C(2,3,0). ∵=λ,∴=+=. ∴=. 若CP∥平面ABEF,則⊥,即·=0, 即=0,解得λ=. ∴AD上存在一點P,當(dāng)=時,滿足CP∥平面ABEF. (2)設(shè)BE=x,則AF=x(0<x≤4

15、),所以三棱錐A­CDF的體積 V=x××2(6-x)=x(6-x)≤×=3. ∴當(dāng)x=3時,三棱錐A­CDF的體積V有最大值,最大值為3.此時A(0,0,3),D(0,3,0),C(2,1,0),則=(0,0,3),=(2,1,0). 設(shè)平面ACE的法向量m=(x1,y1,z1),則 即 令x1=3,則m=(3,0,2). 設(shè)平面ACF的法向量n=(x2,y2,z2),則 即 令x2=1,則n=(1,-2,0). ∴cos〈m,n〉==, 則二面角E­AC­F的余弦值為. ■題型強化集訓(xùn)………

16、………………………………………………………………· (見專題限時集訓(xùn)T2、T4、T5、T11、T13) 三年真題| 驗收復(fù)習(xí)效果 (對應(yīng)學(xué)生用書第32頁) 1.(20xx·全國Ⅰ卷)平面α過正方體ABCD­A1B1C1D1的頂點A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,則m,n所成角的正弦值為(  ) 【導(dǎo)學(xué)號:07804067】 A.   B. C. D. A [設(shè)平面CB1D1∩平面ABCD=m1. ∵平面α∥平面CB1D1,∴m1∥m. 又平面ABCD∥平面A1B1C1D1, 且平面CB1D1∩平面A1B

17、1C1D1=B1D1, ∴B1D1∥m1.∴B1D1∥m. ∵平面ABB1A1∥平面DCC1D1, 且平面CB1D1∩平面DCC1D1=CD1, 同理可證CD1∥n. 因此直線m與n所成的角即直線B1D1與CD1所成的角. 在正方體ABCD­A1B1C1D1中,△CB1D1是正三角形, 故直線B1D1與CD1所成角為60°,其正弦值為.] 2.(20xx·全國Ⅱ卷)已知直三棱柱ABC­A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,則異面直線AB1與BC1所成角的余弦值為(  ) A. B. C. D. C

18、 [法一:(幾何法)將直三棱柱ABC­A1B1C1補形為直四棱柱ABCD­A1B1C1D1,如圖①所示,連接AD1,B1D1,BD. 圖① 由題意知∠ABC=120°,AB=2,BC=CC1=1, 所以AD1=BC1=,AB1=,∠DAB=60°. 在△ABD中,由余弦定理知BD2=22+12-2×2×1×cos 60°=3,所以BD=,所以B1D1=. 又AB1與AD1所成的角即為AB1與BC1所成的角θ, 所以cos θ===. 故選C. 法二:(向量法)以B1為坐標(biāo)原點,B1C1所在的直線

19、為x軸,垂直于B1C1的直線為y軸,BB1所在的直線為z軸建立空間直角坐標(biāo)系,如圖②所示. 圖② 由已知條件知B1(0,0,0),B(0,0,1),C1(1,0,0),A(-1,,1),則=(1,0,-1),=(1,-,-1). 所以cos〈,〉===. 所以異面直線AB1與BC1所成的角的余弦值為. 故選C.] 3.(20xx·全國Ⅱ卷)α,β是兩個平面,m,n是兩條直線,有下列四個命題: ①如果m⊥n,m⊥α,n∥β,那么α⊥β. ②如果m⊥α,n∥α,那么m⊥n. ③如果α∥β,m?α,那么m∥β. ④如果m∥n,α∥β,那么m與α所成的角和n與β所成的

20、角相等. 其中正確的命題有________.(填寫所有正確命題的編號) ②③④ [對于①,α,β可以平行,也可以相交但不垂直,故錯誤. 對于②,由線面平行的性質(zhì)定理知存在直線l?α,n∥l,又m⊥α,所以m⊥l,所以m⊥n,故正確. 對于③,因為α∥β,所以α,β沒有公共點.又m?α,所以m,β沒有公共點,由線面平行的定義可知m∥β,故正確. 對于④,因為m∥n,所以m與α所成的角和n與α所成的角相等.因為α∥β,所以n與α所成的角和n與β所成的角相等,所以m與α所成的角和n與β所成的角相等,故正確.] 4.(20xx·全國Ⅲ卷)a,b為空間中兩條互相垂直的直線,等腰直角

21、三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論: ①當(dāng)直線AB與a成60°角時,AB與b成30°角; ②當(dāng)直線AB與a成60°角時,AB與b成60°角; ③直線AB與a所成角的最小值為45°; ④直線AB與a所成角的最大值為60°. 其中正確的是________.(填寫所有正確結(jié)論的編號) ②③ [依題意建立如圖所示的空間直角坐標(biāo)系.設(shè)等腰直角三角形ABC的直角邊長為1. 由題意知點B在平面xOy中形成的軌跡是以C為圓心,1為半徑的圓. 設(shè)直線a的方向向量為a=(0,1,0)

22、,直線b的方向向量為b=(1,0,0),以O(shè)x軸為始邊沿逆時針方向旋轉(zhuǎn)的旋轉(zhuǎn)角為θ,θ∈[0,2π),則B(cos θ,sin θ,0), ∴=(cos θ,sin θ,-1),||=. 設(shè)直線AB與a所成夾角為α, 則cos α==|sin θ|∈, ∴45°≤α≤90°,∴③正確,④錯誤. 設(shè)直線AB與b所成夾角為β, 則cos β==|cos θ|. 當(dāng)直線AB與a的夾角為60°,即α=60°時, 則|sin θ|=cos α=cos 60°=, ∴|cos θ|=.∴cos β=|cos θ|=. ∵0°≤

23、β≤90°,∴β=60°,即直線AB與b的夾角為60°. ∴②正確,①錯誤.] 5.(20xx·全國Ⅰ卷)如圖9­5,四邊形ABCD為菱形,∠ABC=120°,E,F(xiàn)是平面ABCD同一側(cè)的兩點,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. 圖9­5 (1)證明:平面AEC⊥平面AFC; (2)求直線AE與直線CF所成角的余弦值. 【導(dǎo)學(xué)號:07804068】 [解] (1)證明:如圖,連接BD,設(shè)BD∩AC=G,連接EG,F(xiàn)G,EF. 在菱形ABCD中,不妨設(shè)GB=1.由∠ABC=

24、120°,可得AG=GC=. 由BE⊥平面ABCD,AB=BC,可知AE=EC. 又AE⊥EC,所以EG=,且EG⊥AC. 在Rt△EBG中,可得BE=,故DF=. 在Rt△FDG中,可得FG=. 在直角梯形BDFE中,由BD=2,BE=,DF=,可得EF=. 從而EG2+FG2=EF2,所以EG⊥FG. 又AC∩FG=G,所以EG⊥平面AFC. 因為EG?平面AEC,所以平面AEC⊥平面AFC. (2)如圖,以G為坐標(biāo)原點,分別以,的方向為x軸,y軸正方向,||為單位長度,建立空間直角坐標(biāo)系G­xyz. 由(1)可得A(0,-,0),E(1,0,),F(xiàn),C(0,,0), 所以=(1,,),=. 故cos〈,〉==-. 所以直線AE與直線CF所成角的余弦值為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!