《浙江省紹興地區(qū)九年級(jí)中考數(shù)學(xué)復(fù)習(xí)講義 第10課時(shí) 一元二次方程根的判別式》由會(huì)員分享,可在線閱讀,更多相關(guān)《浙江省紹興地區(qū)九年級(jí)中考數(shù)學(xué)復(fù)習(xí)講義 第10課時(shí) 一元二次方程根的判別式(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、▼▼▼2019屆數(shù)學(xué)中考復(fù)習(xí)資料▼▼▼
第10課時(shí) 一元二次方程根的判別式
九(上)第四章
[課標(biāo)要求]:
1、理解一元二次方程的根的判別式
2、會(huì)根據(jù)根的判別式判斷數(shù)字系數(shù)的一元二次方程根的情況.
3、會(huì)根據(jù)字母系數(shù)的一元二次方程根的情況,確定字母的取值范圍.
[要點(diǎn)疏理]
一元二次方程的ax2+bx+c=0(a≠0)的根的判別式是△=______
[基礎(chǔ)訓(xùn)練]
1、若一元二次方程x2+2x+m=0無實(shí)數(shù)解,則m的取值范圍是_____
2、關(guān)于x的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,則m的值是( )
A、 B. C. D.或
3、如果方程x2-2x
2、+m=0有實(shí)根,則m的取值范圍是______
4、已知關(guān)于x的一元二次方程(a-1)x2-2x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則a的取值范圍是( ?。?
A、a<2 B、a>2 C、a<2且a≠1 D、a<-2
5、已知關(guān)于x的一元二次方程x2-bx+c=0的兩根分別為x1=1,x2=-2,則b與c的值分別是( ?。?
A、b=-1,c=2 B、b=1,c=-2 C、b=1,c=2 D、b=-1,c=-2
6、如果關(guān)于x的一元二次方程x2+4x+a=0的兩個(gè)不相等的實(shí)數(shù)根x1、x2滿足x1x2-2x1-2x2-5=0,那
3、么a的值為( ?。?
A、3 B、-3 C、13 D、-13
7、已知一元二次方程x2-3x-1=0的兩個(gè)根x1、x2,則的值為( ?。?
A、-3 B、3 C、-6 D、6
8、設(shè)一元二次方程(x-1)(x-2)=m(m>0)的兩實(shí)根分別為α、β,則α、β滿足( )
A、1<α<β<2 B、1<α<2<β C、α<1<β<2 D、α<1且β>2
[問題研討
例1、已知關(guān)于x的一元二次方程x2-4x+m-1=0有兩個(gè)相等的實(shí)數(shù)根,求m的值及方程的根。
例2、已知關(guān)于x的方程2x2-(4k+1)x+2k2-
4、1=0,k為何值時(shí):
①方程有兩個(gè)不相等實(shí)根; ②方程有兩個(gè)等根; ?、鄯匠虥]有實(shí)根
例3、關(guān)于x的一元二次方程x2+3x+m-1=0的兩個(gè)實(shí)數(shù)根分別為x1、x2.
(1)求m的取值范圍.
(2)若2(x1+x2)+x1x2+10=0,求m的值.
變式:(1)關(guān)于x的一元二次方程(a-5)x2-4x-1=0有實(shí)數(shù)根,求a的取值范圍.
(2)關(guān)于x的方程(a-5)x2-4x-1=0有兩個(gè)實(shí)數(shù)根,求a的取值范圍.
例4、已知函數(shù)的圖象如圖所示,那么關(guān)于的方程的根的情況是
5、( )
A、無實(shí)數(shù)根 B、有兩個(gè)相等實(shí)數(shù)根
C、有兩個(gè)異號(hào)實(shí)數(shù)根 D、有兩個(gè)同號(hào)不等實(shí)數(shù)根
例5、已知關(guān)于的方程
(1)當(dāng)取何值時(shí),方程有兩個(gè)實(shí)數(shù)根;
(2)給選取一個(gè)合適的整數(shù),使方程有兩個(gè)不等的有理數(shù)根,并求出這兩個(gè)實(shí)數(shù)根.
例6、已知△ABC的兩邊AB、AC的長(zhǎng)是關(guān)于x的一元二次方程:
x2-(2k+1)x+k(k+1)=0的兩個(gè)實(shí)數(shù)根,第三邊BC的長(zhǎng)為5.求k為何值時(shí),△ABC是等腰三角形?并求△ABC的周長(zhǎng).
[規(guī)律總結(jié)]
1、 判別含字母系數(shù)的一元二次方程的一般步驟
①把方程化
6、為一般形式,寫出根的判別式;
②確定判別式的符號(hào);
③根據(jù)判別式的符號(hào),得出結(jié)論.
2、應(yīng)用根的判別式時(shí)應(yīng)注意二次項(xiàng)系數(shù)不為0
3、注意結(jié)論的正逆兩個(gè)方面的應(yīng)用
[強(qiáng)化訓(xùn)練]
1、已知關(guān)于x的一元二次方程x2+2x+m=0.
(1)當(dāng)m=3時(shí),判斷方程的根的情況.
(2)當(dāng)m=-3時(shí),求方程的根.
2、已知關(guān)于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求證:無論m取何值,原方程總有兩個(gè)不相等的實(shí)數(shù)根.
(2)若x1、x2是原方程的兩個(gè)根,且,求m的值和此時(shí)方程的兩根.
3、已知關(guān)于x的一元二次方程(x-m)2+6x=4m-3有實(shí)數(shù)根.
(1)求m的取值范圍.
(2)設(shè)方程的兩實(shí)數(shù)根分別為x1與x2,求代數(shù)式x1·x2-的最大值.
4、已知x1、x2是一元二次方程(a-b)x2+2ax+a=0的兩個(gè)實(shí)數(shù)根.
(1)是否存在實(shí)數(shù)a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,請(qǐng)說明理由.
(2)求使(x1+1)(x2+1)的負(fù)整數(shù)的實(shí)數(shù)a的整數(shù)值.