高考數(shù)學(xué)一輪復(fù)習(xí) 必考部分 第七篇 立體幾何 第6節(jié) 空間直角坐標(biāo)系課件 文 北師大版

上傳人:無*** 文檔編號:51723510 上傳時間:2022-01-29 格式:PPT 頁數(shù):22 大?。?.72MB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學(xué)一輪復(fù)習(xí) 必考部分 第七篇 立體幾何 第6節(jié) 空間直角坐標(biāo)系課件 文 北師大版_第1頁
第1頁 / 共22頁
高考數(shù)學(xué)一輪復(fù)習(xí) 必考部分 第七篇 立體幾何 第6節(jié) 空間直角坐標(biāo)系課件 文 北師大版_第2頁
第2頁 / 共22頁
高考數(shù)學(xué)一輪復(fù)習(xí) 必考部分 第七篇 立體幾何 第6節(jié) 空間直角坐標(biāo)系課件 文 北師大版_第3頁
第3頁 / 共22頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)一輪復(fù)習(xí) 必考部分 第七篇 立體幾何 第6節(jié) 空間直角坐標(biāo)系課件 文 北師大版》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí) 必考部分 第七篇 立體幾何 第6節(jié) 空間直角坐標(biāo)系課件 文 北師大版(22頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、第第6 6節(jié)空間直角坐標(biāo)系節(jié)空間直角坐標(biāo)系知識鏈條完善知識鏈條完善 把散落的知識連起來把散落的知識連起來【教材導(dǎo)讀【教材導(dǎo)讀】 1.1.如何確定空間中點(diǎn)的坐標(biāo)如何確定空間中點(diǎn)的坐標(biāo)? ?提示提示: :確定點(diǎn)在三條軸上的射影確定點(diǎn)在三條軸上的射影. .2.2.坐標(biāo)軸上的點(diǎn)至少有幾個坐標(biāo)為坐標(biāo)軸上的點(diǎn)至少有幾個坐標(biāo)為0,0,坐標(biāo)平面上的點(diǎn)呢坐標(biāo)平面上的點(diǎn)呢? ?提示提示: :坐標(biāo)軸上的點(diǎn)至少有坐標(biāo)軸上的點(diǎn)至少有2 2個坐標(biāo)為個坐標(biāo)為0,0,坐標(biāo)平面內(nèi)的點(diǎn)至少有一個坐坐標(biāo)平面內(nèi)的點(diǎn)至少有一個坐標(biāo)為標(biāo)為0.0.知識梳理知識梳理1.1.空間直角坐標(biāo)系及有關(guān)概念空間直角坐標(biāo)系及有關(guān)概念(1)(1)空間直角

2、坐標(biāo)系空間直角坐標(biāo)系在平面直角坐標(biāo)系的基礎(chǔ)上在平面直角坐標(biāo)系的基礎(chǔ)上, ,通過原點(diǎn)通過原點(diǎn)O,O,再增加一條與再增加一條與xOyxOy平面平面 的的z z軸軸, ,就建立了三個維度的空間直角坐標(biāo)系就建立了三個維度的空間直角坐標(biāo)系O-xyz.O-xyz.一般將一般將x x軸和軸和y y軸放置在軸放置在 上上, ,那么那么z z軸就垂直于水平面軸就垂直于水平面. .它們的方向通常符合右手螺旋法它們的方向通常符合右手螺旋法則則1.1.在空間直角坐標(biāo)系中在空間直角坐標(biāo)系中,O,O叫作原點(diǎn)叫作原點(diǎn),x,y,z,x,y,z軸統(tǒng)稱為坐標(biāo)軸軸統(tǒng)稱為坐標(biāo)軸. .由坐標(biāo)軸由坐標(biāo)軸確定的平面叫作坐標(biāo)平面確定的平面叫

3、作坐標(biāo)平面,x,y,x,y軸確定的平面記作軸確定的平面記作xOyxOy平面平面,y,z,y,z軸確定的軸確定的平面記作平面記作yOzyOz平面平面,x,z,x,z軸確定的平面記作軸確定的平面記作xOzxOz平面平面. .(2)(2)空間直角坐標(biāo)系中點(diǎn)的坐標(biāo)空間直角坐標(biāo)系中點(diǎn)的坐標(biāo)空間中任意一點(diǎn)空間中任意一點(diǎn)P P的坐標(biāo)記為的坐標(biāo)記為(x,y,z(x,y,z),),第一個是第一個是 坐標(biāo)坐標(biāo), ,第二個是第二個是 坐坐標(biāo)標(biāo), ,第三個是第三個是 坐標(biāo)坐標(biāo). .垂直垂直水平面水平面x xy yz z【重要結(jié)論【重要結(jié)論】 坐標(biāo)軸上的點(diǎn)至少有兩個坐標(biāo)為坐標(biāo)軸上的點(diǎn)至少有兩個坐標(biāo)為0;0;坐標(biāo)平面內(nèi)的

4、點(diǎn)至少有一個坐標(biāo)為坐標(biāo)平面內(nèi)的點(diǎn)至少有一個坐標(biāo)為0.0.夯基自測夯基自測1.1.在空間直角坐標(biāo)系中在空間直角坐標(biāo)系中P(1,0,0)P(1,0,0)在在( ( ) )(A)x(A)x軸上軸上(B)y(B)y軸上軸上(C)yOz(C)yOz平面內(nèi)平面內(nèi)(D)xOz(D)xOz平面內(nèi)平面內(nèi)解析解析: :因?yàn)樵擖c(diǎn)的因?yàn)樵擖c(diǎn)的y y坐標(biāo)、坐標(biāo)、z z坐標(biāo)為坐標(biāo)為0,0,所以在所以在x x軸上軸上. .A A2.2.點(diǎn)點(diǎn)P(2,0,3)P(2,0,3)在空間直角坐標(biāo)系中的位置是在在空間直角坐標(biāo)系中的位置是在( ( ) )(A)y(A)y軸上軸上(B)xOy(B)xOy平面上平面上(C)xOz(C)xOz

5、平面上平面上(D)yOz(D)yOz平面上平面上C C 解析解析: :結(jié)合空間直角坐標(biāo)系及點(diǎn)結(jié)合空間直角坐標(biāo)系及點(diǎn)P P的坐標(biāo)特點(diǎn)的坐標(biāo)特點(diǎn), ,可知點(diǎn)可知點(diǎn)P P在在xOzxOz平面上平面上. .3.3.點(diǎn)點(diǎn)P(1,2,3)P(1,2,3)關(guān)于關(guān)于xOyxOy面的對稱點(diǎn)為面的對稱點(diǎn)為( ( ) )(A)(-1,2,3)(A)(-1,2,3)(B)(1,-2,3)(B)(1,-2,3)(C)(1,2,-3)(C)(1,2,-3)(D)(-1,-2,3)(D)(-1,-2,3)解析解析: :點(diǎn)點(diǎn)P(x,y,zP(x,y,z) )關(guān)于面關(guān)于面xOyxOy的對稱點(diǎn)為的對稱點(diǎn)為Q(x,y,-zQ(x,

6、y,-z),),即即P(1,2,3)P(1,2,3)關(guān)于關(guān)于面面xOyxOy對稱點(diǎn)為對稱點(diǎn)為(1,2,-3).(1,2,-3).C C4.4.已知已知A(-2,3,4),A(-2,3,4),在在y y軸上求一點(diǎn)軸上求一點(diǎn)B,B,使使|AB|=6,|AB|=6,則點(diǎn)則點(diǎn)B B的坐標(biāo)為的坐標(biāo)為( ( ) )(A)(0,-1,0)(A)(0,-1,0) (B)(0,-7,0) (B)(0,-7,0)(C)(0,-1,0)(C)(0,-1,0)或或(0,7,0)(0,7,0) (D)(0,1,0)(D)(0,1,0)或或(0,-7,0)(0,-7,0)C C5.5.點(diǎn)點(diǎn)A(-1,0,3)A(-1,0,

7、3)關(guān)于點(diǎn)關(guān)于點(diǎn)B(1,-1,2)B(1,-1,2)的對稱點(diǎn)的坐標(biāo)為的對稱點(diǎn)的坐標(biāo)為.答案答案: :(3,-2,1)(3,-2,1)考點(diǎn)專項(xiàng)突破考點(diǎn)專項(xiàng)突破 在講練中理解知識在講練中理解知識考點(diǎn)一考點(diǎn)一 求空間點(diǎn)的坐標(biāo)求空間點(diǎn)的坐標(biāo)答案答案: :(1)D(1)D(2)(2)點(diǎn)點(diǎn)A(3,2,7),B(3,5,-2)A(3,2,7),B(3,5,-2)關(guān)于點(diǎn)關(guān)于點(diǎn)C C對稱對稱, ,則則C C點(diǎn)坐標(biāo)為點(diǎn)坐標(biāo)為.反思?xì)w納反思?xì)w納 求空間中點(diǎn)求空間中點(diǎn)P P的坐標(biāo)的方法的坐標(biāo)的方法(1)(1)過點(diǎn)過點(diǎn)P P作與作與x x軸垂直的平面軸垂直的平面, ,垂足在垂足在x x軸上對應(yīng)的數(shù)即為點(diǎn)軸上對應(yīng)的數(shù)即為

8、點(diǎn)P P的的x x坐標(biāo)坐標(biāo); ;同同理可求理可求y y坐標(biāo)、坐標(biāo)、z z坐標(biāo)坐標(biāo). .(2)(2)從點(diǎn)從點(diǎn)P P向三個坐標(biāo)平面作垂線向三個坐標(biāo)平面作垂線, ,所得點(diǎn)所得點(diǎn)P P到三個平面的距離等于點(diǎn)到三個平面的距離等于點(diǎn)P P的的對應(yīng)坐標(biāo)的絕對值對應(yīng)坐標(biāo)的絕對值, ,再判斷出對應(yīng)數(shù)值的符號再判斷出對應(yīng)數(shù)值的符號, ,進(jìn)而可求得點(diǎn)進(jìn)而可求得點(diǎn)P P的坐標(biāo)的坐標(biāo). .(3)(3)常見對稱點(diǎn)的坐標(biāo)規(guī)律常見對稱點(diǎn)的坐標(biāo)規(guī)律點(diǎn)點(diǎn)P(x,y,zP(x,y,z) )關(guān)于各點(diǎn)、線、面的對稱點(diǎn)的坐標(biāo)關(guān)于各點(diǎn)、線、面的對稱點(diǎn)的坐標(biāo)點(diǎn)、線、面點(diǎn)、線、面對稱點(diǎn)坐標(biāo)對稱點(diǎn)坐標(biāo)原點(diǎn)原點(diǎn)(-x,-y,-z(-x,-y,-z

9、) )x x軸軸(x,-y,-z(x,-y,-z) )y y軸軸(-x,y,-z(-x,y,-z) )z z軸軸(-x,-y,z(-x,-y,z) )坐標(biāo)平面坐標(biāo)平面xOyxOy(x,y,-z(x,y,-z) )坐標(biāo)平面坐標(biāo)平面yOzyOz(-x,y,z(-x,y,z) )坐標(biāo)平面坐標(biāo)平面xOzxOz(x,-y,z(x,-y,z) )(4)(4)若若A,BA,B關(guān)于關(guān)于C C點(diǎn)對稱點(diǎn)對稱, ,則則C C為為ABAB的中點(diǎn)的中點(diǎn). .【即時訓(xùn)練【即時訓(xùn)練】 已知已知P(1,-2,3).P(1,-2,3).(1)(1)過過P P作面作面xOzxOz的垂線的垂線PH,PH,垂足為垂足為H,H,則則H

10、 H點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為;(2)(2)過過P P作作x x軸的垂線軸的垂線PQ,PQ,垂足為垂足為Q,Q,則則Q Q點(diǎn)坐標(biāo)為點(diǎn)坐標(biāo)為;(3)P(3)P點(diǎn)關(guān)于點(diǎn)關(guān)于xOyxOy面的對稱點(diǎn)面的對稱點(diǎn)A A的坐標(biāo)為的坐標(biāo)為;(4)P(4)P點(diǎn)關(guān)于點(diǎn)關(guān)于y y軸的對稱點(diǎn)軸的對稱點(diǎn)B B的坐標(biāo)為的坐標(biāo)為.解析解析: :(1)H(1)H點(diǎn)在點(diǎn)在xOzxOz面內(nèi)面內(nèi), ,其其y y坐標(biāo)為坐標(biāo)為0,x0,x坐標(biāo)和坐標(biāo)和z z坐標(biāo)不變坐標(biāo)不變, ,故故H(1,0,3);H(1,0,3);(2)Q(2)Q點(diǎn)在點(diǎn)在x x軸上軸上, ,其其y y坐標(biāo)、坐標(biāo)、z z坐標(biāo)為坐標(biāo)為0,x0,x坐標(biāo)不變坐標(biāo)不變, ,故故Q(

11、1,0,0).Q(1,0,0).(3)A,P(3)A,P兩點(diǎn)兩點(diǎn)x,yx,y坐標(biāo)不變坐標(biāo)不變,z,z坐標(biāo)互為相反數(shù)坐標(biāo)互為相反數(shù), ,故故A(1,-2,-3).A(1,-2,-3).(4)B,P(4)B,P兩點(diǎn)兩點(diǎn)y y坐標(biāo)不變坐標(biāo)不變,x,z,x,z坐標(biāo)互為相反數(shù)坐標(biāo)互為相反數(shù), ,故故B(-1,-2,-3).B(-1,-2,-3).答案答案: :(1)(1,0,3)(1)(1,0,3)(2)(1,0,0)(2)(1,0,0)(3)(1,-2,-3)(3)(1,-2,-3)(4)(-1,-2,-3)(4)(-1,-2,-3)考點(diǎn)二考點(diǎn)二 空間兩點(diǎn)間的距離公式空間兩點(diǎn)間的距離公式【例【例2 2

12、】 已知已知P(a,b,cP(a,b,c) )(1)P(1)P點(diǎn)到坐標(biāo)平面點(diǎn)到坐標(biāo)平面xOyxOy的距離為的距離為 ;(2)P(2)P點(diǎn)到點(diǎn)到x x軸的距離為軸的距離為 ;解析解析: :(1)P(1)P到坐標(biāo)平面到坐標(biāo)平面xOyxOy的距離的距離d=|c|;d=|c|;(3)P(3)P在在y y軸上軸上, ,且且|OP|=2,|OP|=2,則則P P到到Q(1,0,1)Q(1,0,1)的距離為的距離為 .反思?xì)w納反思?xì)w納 (1)(1)求空間兩點(diǎn)間距離的步驟求空間兩點(diǎn)間距離的步驟建立坐標(biāo)系建立坐標(biāo)系, ,寫出相關(guān)點(diǎn)的坐標(biāo)寫出相關(guān)點(diǎn)的坐標(biāo); ;利用公式求出兩點(diǎn)間的距離利用公式求出兩點(diǎn)間的距離. .

13、(2)(2)兩點(diǎn)間距離公式的應(yīng)用兩點(diǎn)間距離公式的應(yīng)用求兩點(diǎn)間的距離或線段的長度求兩點(diǎn)間的距離或線段的長度; ;已知兩點(diǎn)間距離已知兩點(diǎn)間距離, ,確定坐標(biāo)中參數(shù)的值確定坐標(biāo)中參數(shù)的值; ;根據(jù)已知條件探求滿足條件的點(diǎn)的存在性根據(jù)已知條件探求滿足條件的點(diǎn)的存在性. .【即時訓(xùn)練【即時訓(xùn)練】 已知已知A(1,0,2),B(1,-3,1),A(1,0,2),B(1,-3,1),點(diǎn)點(diǎn)M M在在z z軸上軸上, ,且且|AM|=|BM|,|AM|=|BM|,則則M M點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為.答案答案: :(0,0,-3)(0,0,-3)易混易錯辨析易混易錯辨析 用心練就一雙慧眼用心練就一雙慧眼混淆對稱軸與對

14、稱面導(dǎo)致求錯點(diǎn)的坐標(biāo)混淆對稱軸與對稱面導(dǎo)致求錯點(diǎn)的坐標(biāo)【典例【典例】 已知已知A(-2,3,1)A(-2,3,1)關(guān)于坐標(biāo)平面關(guān)于坐標(biāo)平面yOzyOz的對稱點(diǎn)為的對稱點(diǎn)為B,B,則則B B點(diǎn)到點(diǎn)到C(1,0,1)C(1,0,1)的距離為的距離為.易錯提醒易錯提醒: :空間中兩點(diǎn)關(guān)于坐標(biāo)平面的對稱與關(guān)于坐標(biāo)軸的對稱易于空間中兩點(diǎn)關(guān)于坐標(biāo)平面的對稱與關(guān)于坐標(biāo)軸的對稱易于混淆混淆, ,如該題如該題, ,易誤認(rèn)為易誤認(rèn)為A,BA,B兩點(diǎn)兩點(diǎn)x x坐標(biāo)相等坐標(biāo)相等,y,y坐標(biāo)和坐標(biāo)和z z坐標(biāo)互為相反數(shù)坐標(biāo)互為相反數(shù)導(dǎo)致失誤導(dǎo)致失誤, ,所以要把握空間坐標(biāo)系中點(diǎn)的坐標(biāo)的特點(diǎn)所以要把握空間坐標(biāo)系中點(diǎn)的坐標(biāo)

15、的特點(diǎn), ,熟記相關(guān)結(jié)論熟記相關(guān)結(jié)論, ,避免失誤避免失誤. .備選例題備選例題【例【例1 1】 已知一長方體已知一長方體ABCD-AABCD-A1 1B B1 1C C1 1D D1 1的對稱中心在坐標(biāo)原點(diǎn)的對稱中心在坐標(biāo)原點(diǎn)O,O,交于同交于同一頂點(diǎn)的三個面分別平行于三個坐標(biāo)平面一頂點(diǎn)的三個面分別平行于三個坐標(biāo)平面, ,其中頂點(diǎn)其中頂點(diǎn)A A1 1、B B1 1、C C1 1、D D1 1分分別位于第別位于第、象限象限, ,且棱長且棱長AAAA1 1=2,AB=6,AD=4.=2,AB=6,AD=4.求長方體各頂求長方體各頂點(diǎn)的坐標(biāo)點(diǎn)的坐標(biāo). .【例【例2 2】 在長方體在長方體ABCD-AABCD-A1 1B B1 1C C1 1D D1 1中中,AB=AD=2,AA,AB=AD=2,AA1 1=4,=4,點(diǎn)點(diǎn)M M在在A A1 1C C1 1上上, ,|MC1|=2|A|MC1|=2|A1 1M|,NM|,N在在D D1 1C C上且為上且為D D1 1C C中點(diǎn)中點(diǎn), ,求求M,NM,N兩點(diǎn)間的距離兩點(diǎn)間的距離. .

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!