《新編新課標(biāo)Ⅱ版高考數(shù)學(xué)分項(xiàng)匯編 專(zhuān)題11 概率和統(tǒng)計(jì)含解析文科》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《新編新課標(biāo)Ⅱ版高考數(shù)學(xué)分項(xiàng)匯編 專(zhuān)題11 概率和統(tǒng)計(jì)含解析文科(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
專(zhuān)題11 概率和統(tǒng)計(jì)
一.基礎(chǔ)題組
1. 【20xx全國(guó)新課標(biāo),文3】在一組樣本數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散點(diǎn)圖中,若所有樣本點(diǎn)(xi,yi)(i=1,2,…,n)都在直線(xiàn)上,則這組樣本數(shù)據(jù)的樣本相關(guān)系數(shù)為( )
A.-1 B.0 C. D.1
【答案】D
2. 【2005全國(guó)3,文3】在的展開(kāi)式中的系數(shù)是 ( )
A.-14 B.14 C.-28 D.28
【答案】B
【解析】
3. 【2005全國(guó)2,文8
2、】的展開(kāi)式中項(xiàng)的系數(shù)是( )
(A) 840 (B) (C) 210 (D)
【答案】A
【解析】,令,則展開(kāi)式中項(xiàng)的系數(shù)是.
4. 【20xx全國(guó)2,文13】甲,乙兩名運(yùn)動(dòng)員各自等可能地從紅、白、藍(lán)3種顏色的運(yùn)動(dòng)服中選擇1種,則他們選擇相同顏色運(yùn)動(dòng)服的概率為_(kāi)______.
【答案】
5. 【20xx課標(biāo)全國(guó)Ⅱ,文13】從1,2,3,4,5中任意取出兩個(gè)不同的數(shù),其和為5的概率是__________.
【答案】:0.2
6. 【20xx全國(guó)2,文14】(x+)9的展開(kāi)式中,x3的系數(shù)是________.
【答案】:84
7. 【2007全國(guó)2,文13】一個(gè)總體含
3、有100個(gè)個(gè)體,以簡(jiǎn)單隨機(jī)抽樣方式從該總體中抽取一個(gè)容量為5的樣本,則指定的某個(gè)個(gè)體被抽到的概率為 .
【答案】:
8. 【2006全國(guó)2,文13】在的展開(kāi)式中常數(shù)項(xiàng)是_____。(用數(shù)字作答)
【答案】45
【解析】,令,即,
∴常數(shù)項(xiàng)為.
9. 【2006全國(guó)2,文16】一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫(huà)了樣本的頻率分布直方圖(如下圖)。為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣方法抽出100人作進(jìn)一步調(diào)查,則在(元)月收入段應(yīng)抽出_____人。
【答案】25
10. 【20xx
4、全國(guó)2,文19】(本小題滿(mǎn)分12分)
某市為了考核甲、乙兩部門(mén)的工作情況,隨機(jī)訪(fǎng)問(wèn)了50位市民,根據(jù)這50位市民對(duì)這兩部門(mén)的評(píng)分(評(píng)分越高表明市民的評(píng)價(jià)越高),繪制莖葉圖如下:
(Ⅰ)分別估計(jì)該市的市民對(duì)甲、乙兩部門(mén)評(píng)分的中位數(shù);
(Ⅱ)分別估計(jì)該市的市民對(duì)甲、乙兩部門(mén)的評(píng)分高于90的概率;
(Ⅲ)根據(jù)莖葉圖分析該市的市民對(duì)甲、乙兩部門(mén)的評(píng)優(yōu).
【解析】(Ⅰ)由所給莖葉圖知,50位市民對(duì)這甲部門(mén)的評(píng)分由小到大排序,排在第25,26位的是75,,75,故樣本中位數(shù)為75,所以該市的市民對(duì)甲部門(mén)評(píng)分的中位數(shù)的估計(jì)值是75.50位市民對(duì)這乙部門(mén)的評(píng)分由小到大排序,排在第25,26位
5、的是66,68,故樣本中位數(shù)為,所以該市的市民對(duì)乙部門(mén)評(píng)分的中位數(shù)的估計(jì)值是67.
11. 【20xx全國(guó)新課標(biāo),文19】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(3)根據(jù)(2)的結(jié)論,能否提出更好的調(diào)查方法來(lái)估計(jì)該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說(shuō)明理由.
附:
P(K2≥k)
0.050 0.010 0.001
k
3.841 6.635 1
6、0.828
K2=
【解析】:(1)調(diào)查的500位老年人中有70位需要志愿者提供幫助,因此該地區(qū)老年人中,需要幫助的老年人的比例的估計(jì)值為=14%.
(2)K2=≈9.967.
由于9.967>6.635,所以有99%的把握認(rèn)為該地區(qū)的老年人是否需要幫助與性別有關(guān).
(3)由(2)的結(jié)論知,該地區(qū)老年人是否需要幫助與性別有關(guān),并且從樣本數(shù)據(jù)能看出該地區(qū)男性老年人與女性老年人中需要幫助的比例有明顯差異,因此在調(diào)查時(shí),先確定該地區(qū)老年人中男、女的比例,再把老年人分成男、女兩層并采用分層抽樣方法比采用簡(jiǎn)單隨機(jī)抽樣方法更好.
12. 【2005全國(guó)3,文18】(本小題滿(mǎn)分12分)
7、設(shè)甲、乙、丙三臺(tái)機(jī)器是否需要照顧相互之間沒(méi)有影響。已知在某一小時(shí)內(nèi),甲、乙都需要照顧的概率為0.05,甲、丙都需要照顧的概率為0.1,乙、丙都需要照顧的概率為0.125,
(Ⅰ)求甲、乙、丙每臺(tái)機(jī)器在這個(gè)小時(shí)內(nèi)需要照顧的概率分別是多少;
(Ⅱ)計(jì)算這個(gè)小時(shí)內(nèi)至少有一臺(tái)需要照顧的概率.
……12分
13. 【2005全國(guó)2,文18】(本小題滿(mǎn)分12分)
甲、乙兩隊(duì)進(jìn)行一場(chǎng)排球比賽,根據(jù)以往經(jīng)驗(yàn),單局比賽甲隊(duì)勝乙隊(duì)的概率為0.6.本場(chǎng)比賽采用五局三勝制,即先勝三局的隊(duì)獲勝,比賽結(jié)束.設(shè)各局比賽相互間沒(méi)有影響,求:
(Ⅰ) 前三局比賽甲隊(duì)領(lǐng)先的概率;
(Ⅱ) 本場(chǎng)比賽乙隊(duì)
8、以取勝的概率.
【解析】:?jiǎn)尉直荣惣钻?duì)勝乙隊(duì)的概率為0.6,乙隊(duì)勝甲隊(duì)的概率為1-0.6=0.4
(I)記“甲隊(duì)勝三局”為事件A,“甲隊(duì)勝二局”為事件B,則
∴前三局比賽甲隊(duì)領(lǐng)先的概率為P(A)+P(B)=0.648
(II)若本場(chǎng)比賽乙隊(duì)3:2取勝,則前四局雙方應(yīng)以2:2戰(zhàn)平,且第五局乙隊(duì)勝。
所以,所求事件的概率為
二.能力題組
1. 【20xx全國(guó)2,文9】將標(biāo)號(hào)為1,2,3,4,5,6的6張卡片放入3個(gè)不同的信封中,若每個(gè)信封放2張,其中標(biāo)號(hào)為1,2的卡片放入同一信封,則不同的放法共有( )
A.12種 B.18種 C.36種 D.54種
【答案】:B
9、
2. 【2007全國(guó)2,文10】 5位同學(xué)報(bào)名參加兩上課外活動(dòng)小組,每位同學(xué)限報(bào)其中的一個(gè)小組,則不同的報(bào)名方法共有( )
(A)10種 (B) 20種 (C) 25種 (D) 32種
【答案】:D
3. 【20xx全國(guó)新課標(biāo),文14】設(shè)函數(shù)y=f(x)在區(qū)間[0,1]上的圖像是連續(xù)不斷的一條曲線(xiàn),且恒有0≤f(x)≤1,可以用隨機(jī)模擬方法近似計(jì)算由曲線(xiàn)y=f(x)及直線(xiàn)x=0,x=1,y=0所圍成部分的面積S.先產(chǎn)生兩組(每組N個(gè))區(qū)間[0,1]上的均勻隨機(jī)數(shù)x1,x2,…,xN和y1,y2,…,yN,由此得到N個(gè)點(diǎn)(xi,yi)(i=1,2,…,N),再數(shù)
10、出其中滿(mǎn)足yi≤f(xi)(i=1,2,…,N)的點(diǎn)數(shù)N1,那么由隨機(jī)模擬方法可得S的近似值為_(kāi)_______.
【答案】:
【解析】:可以大致繪出一個(gè)圖形,如圖所示,隨機(jī)產(chǎn)生了N個(gè)點(diǎn),而這N個(gè)點(diǎn)里有N1個(gè)點(diǎn)落在曲線(xiàn)下方,自然地,根據(jù)幾何概型我們可以得到=,所以估算出S的近似值為.
4. 【2007全國(guó)2,文16】的展開(kāi)式中常數(shù)項(xiàng)為 。(用數(shù)字作答)
【答案】:57
5. 【2005全國(guó)2,文15】在由數(shù)字0, 1, 2, 3, 4, 5所組成的沒(méi)有重復(fù)數(shù)字的四位數(shù)中,不能被5整除的數(shù)共有_____________個(gè).
【答案】192
6. 【20xx課標(biāo)全
11、國(guó)Ⅱ,文19】(本小題滿(mǎn)分12分)經(jīng)銷(xiāo)商經(jīng)銷(xiāo)某種農(nóng)產(chǎn)品,在一個(gè)銷(xiāo)售季度內(nèi),每售出1 t該產(chǎn)品獲利潤(rùn)500元,未售出的產(chǎn)品,每1 t虧損300元.根據(jù)歷史資料,得到銷(xiāo)售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖,如圖所示.經(jīng)銷(xiāo)商為下一個(gè)銷(xiāo)售季度購(gòu)進(jìn)了130 t該農(nóng)產(chǎn)品.以X(單位:t,100≤X≤150)表示下一個(gè)銷(xiāo)售季度內(nèi)的市場(chǎng)需求量,T(單位:元)表示下一個(gè)銷(xiāo)售季度內(nèi)經(jīng)銷(xiāo)該農(nóng)產(chǎn)品的利潤(rùn).
(1)將T表示為X的函數(shù);
(2)根據(jù)直方圖估計(jì)利潤(rùn)T不少于57 000元的概率.
【解析】:(1)當(dāng)X∈[100,130)時(shí),T=500X-300(130-X)=800X-39 000.
當(dāng)X∈[1
12、30,150]時(shí),T=500×130=65 000.
所以
(2)由(1)知利潤(rùn)T不少于57 000元當(dāng)且僅當(dāng)120≤X≤150.
由直方圖知需求量X∈[120,150]的頻率為0.7,所以下一個(gè)銷(xiāo)售季度內(nèi)的利潤(rùn)T不少于57 000元的概率的估計(jì)值為0.7.
7. 【20xx全國(guó)新課標(biāo),文18】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售.如果當(dāng)天賣(mài)不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購(gòu)進(jìn)17枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式;
(2) 花店記錄了100天玫瑰花的日需求量(單位:枝),整理
13、得下表:
日需求量n
14
15
16
17
18
19
20
頻數(shù)
10
20
16
16
15
13
10
①假設(shè)花店在這100天內(nèi)每天購(gòu)進(jìn)17枝玫瑰花,求這100天的日利潤(rùn)(單位:元)的平均數(shù);
②若花店一天購(gòu)進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)不少于75元的概率. 8. 【2007全國(guó)2,文19】(本小題滿(mǎn)分12分)
從某批產(chǎn)品中,有放回地抽取產(chǎn)品二次,每次隨機(jī)抽取1件,假設(shè)事件A:“取出的2件產(chǎn)品中至多有1件是二等品”的概率P(A)=0.96
(Ⅰ)求從該批產(chǎn)品中任取1件是二等品的概率p;
(Ⅱ
14、)若該批產(chǎn)品共有100件,從中任意抽取2件,求事件B:“取出的2件產(chǎn)品中至少有一件二等品”的概率P(B)。
9. 【2006全國(guó)2,文19】(本小題滿(mǎn)分12分)
某批產(chǎn)品成箱包裝,每箱5件,一用戶(hù)在購(gòu)進(jìn)該批產(chǎn)品前先取出3箱,再?gòu)拿肯渲腥我獬鋈?件產(chǎn)品進(jìn)行檢驗(yàn)。設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品。
(I)求取6件產(chǎn)品中有1件產(chǎn)品是二等品的概率。
(II)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶(hù)就拒絕購(gòu)買(mǎi)這批產(chǎn)品,求這批產(chǎn)品被用戶(hù)拒絕的概率。
【解析】:設(shè)表示事件“第二箱中取出i件二等品”,i=0,1;
表示事件“第三箱中取出i件二等品”,i=
15、0,1,2;
(1)依題意所求的概率為
(2)解法一:所求的概率為
解法二:所求的概率為
三.拔高題組
1. 【2006全國(guó)2,文12】5名志愿者分到3所學(xué)校支教,每個(gè)學(xué)校至少去一名志愿者,則不同的分派方法共有( )
(A)150種 (B)180種 (C)200種 (D)280種
【答案】A
【解析】
2. 【2005全國(guó)3,文13】經(jīng)問(wèn)卷調(diào)查,某班學(xué)生對(duì)攝影分別執(zhí)“喜歡”、“不喜歡”和“一般”三種態(tài)度,其中執(zhí)“一般”態(tài)度的比“不喜歡”態(tài)度的多12人,按分層抽樣方法從全班選出部分學(xué)生座談攝影,如果選出的5位“喜歡”攝影的同學(xué)、1位“不喜歡”攝影的同學(xué)和3位執(zhí)“一般”態(tài)度的同學(xué),那么全班學(xué)生中“喜歡”攝影的比全班人數(shù)的一半還多 人.
【答案】3
3. 【20xx全國(guó)2,文20】如圖,由M到N的電路中有4個(gè)元件,分別標(biāo)為T(mén)1,T2,T3,T4,電流能通過(guò)T1,T2,T3的概率都是p,電流能通過(guò)T4的概率是0.9,電流能否通過(guò)各元件相互獨(dú)立.已知T1,T2,T3中至少有一個(gè)能通過(guò)電流的概率為0.999.
(1)求p;
(2)求電流能在M與N之間通過(guò)的概率;