《高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 計(jì)數(shù)原理與概率 第57講 隨機(jī)事件的概率課件》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 計(jì)數(shù)原理與概率 第57講 隨機(jī)事件的概率課件(31頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、計(jì)數(shù)原理與概率、隨機(jī)變量及其分布第第 九九 章章第第5757講隨機(jī)事件的概率講隨機(jī)事件的概率考綱要求考情分析命題趨勢(shì)1.了解隨機(jī)事件發(fā)生的不確定性和頻率的穩(wěn)定性,了解概率的意義以及頻率與概率的區(qū)別2了解兩個(gè)互斥事件的概率加法公式.2016北京卷,162015江蘇卷,12014全國(guó)卷,5隨機(jī)事件的概率主要考查頻率與概率的關(guān)系,結(jié)合概率的性質(zhì)考查互斥事件和對(duì)立事件的概率.分值:5分板板 塊塊 一一板板 塊塊 二二板板 塊塊 三三欄目導(dǎo)航 1事件的分類確定事件必然事件在條件S下,一定會(huì)發(fā)生的事件叫相對(duì)于條件S的必然事件不可能事件在條件S下,一定不會(huì)發(fā)生的事件叫相對(duì)于條件S的不可能事件隨機(jī)事件在條件S
2、下,_的事件叫做相對(duì)于條件S的隨機(jī)事件可能發(fā)生也可能不發(fā)生 2頻率與概率 (1)在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù),稱事件A出現(xiàn)的比例fn(A)_為事件A出現(xiàn)的頻率 (2)對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的_穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)_記作P(A),稱為事件A發(fā)生的概率,簡(jiǎn)稱為A的概率頻率fn(A) 常數(shù) 3事件的關(guān)系與運(yùn)算包含 BA AB 并事件 事件A發(fā)生 事件B發(fā)生 4概率的幾個(gè)基本性質(zhì) (1)概率的取值范圍:_. (2)必然事件的概率P(E)_. (3)不可能事件的概率P(F)_. (4)互斥事
3、件概率的加法公式: 如果事件A與事件B互斥,則P(AB)_ 若事件B與事件A互為對(duì)立事件,則P(A)_0P(A)1 1 0 P(A)P(B) 1P(B) 解析 事件A發(fā)生的概率近似等于該頻率的穩(wěn)定值A(chǔ) 3從裝有5個(gè)紅球和3個(gè)白球的口袋內(nèi)任取3個(gè)球,那么互斥而不對(duì)立的事件是 () A至少有一個(gè)紅球與都是紅球 B至少有一個(gè)紅球與都是白球 C至少有一個(gè)紅球與至少有一個(gè)白球 D恰有一個(gè)紅球與恰有兩個(gè)紅球 解析 A中的兩個(gè)事件不互斥,B中兩事件互斥且對(duì)立,C中的兩個(gè)事件不互斥,D中的兩個(gè)互斥而不對(duì)立D D 5從1,2,3,4,5中隨機(jī)選取一個(gè)數(shù)為a,從1,2,3中隨機(jī)選取一個(gè)數(shù)為b,則ab的概率為_.
4、對(duì)互斥事件要把握住不能同時(shí)發(fā)生,而對(duì)于對(duì)立事件除不能同時(shí)發(fā)生外,其并事件應(yīng)為必然事件這些也可類比集合進(jìn)行理解,具體應(yīng)用時(shí),可把所有試驗(yàn)結(jié)果寫出來(lái),看所求事件包含哪幾個(gè)試驗(yàn)結(jié)果,從而確定所給事件的關(guān)系一隨機(jī)事件的關(guān)系 【例1】 (1)從1,2,3,7這7個(gè)數(shù)中任取兩個(gè)數(shù),其中: 恰有一個(gè)是偶數(shù)和恰有一個(gè)是奇數(shù); 至少有一個(gè)是奇數(shù)和兩個(gè)都是奇數(shù); 至少有一個(gè)是奇數(shù)和兩個(gè)都是偶數(shù); 至少有一個(gè)是奇數(shù)和至少有一個(gè)是偶數(shù) 上述事件中,是對(duì)立事件的是() AB C DC A A 二隨機(jī)事件的概率 (1)概率與頻率的關(guān)系:頻率反映了一個(gè)隨機(jī)事件出現(xiàn)的頻繁程度,頻率是隨機(jī)的,而概率是一個(gè)確定的值,通常用概率來(lái)
5、反映隨機(jī)事件發(fā)生的可能性的大小,有時(shí)也用頻率來(lái)作為隨機(jī)事件概率的估計(jì)值 (2)隨機(jī)事件概率的求法:利用概率的統(tǒng)計(jì)定義求事件的概率,即通過(guò)大量的重復(fù)試驗(yàn),事件發(fā)生的頻率會(huì)逐漸趨近于某一個(gè)常數(shù),這個(gè)常數(shù)就是概率三互斥事件、對(duì)立事件的概率 (3)再?gòu)腁,B,C三個(gè)班中各隨機(jī)抽取一名學(xué)生,他們?cè)撝艿腻憻挄r(shí)間分別是7,9,8.25(單位:小時(shí))這3個(gè)新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為1,表格中數(shù)據(jù)的平均數(shù)記為0,試判斷0和1的大小(寫出結(jié)論不要求證明)D C B 錯(cuò)因分析:忽視對(duì)立事件與互斥事件的區(qū)別與聯(lián)系,對(duì)立事件和互斥事件都是不可能同時(shí)發(fā)生的事件,但對(duì)立事件必有一個(gè)要發(fā)生,而互斥事件可能都
6、不發(fā)生,所以兩個(gè)事件對(duì)立,則兩個(gè)事件必是互斥事件,反之,兩個(gè)事件是互斥事件,但未必是對(duì)立事件易錯(cuò)點(diǎn)混淆互斥事件和對(duì)立事件 【例1】 從裝有紅球、白球和黑球各2個(gè)的口袋內(nèi)一次取出2個(gè)球,則與事件A“兩球都為白球”互斥而非對(duì)立的事件是以下事件“兩球都不是白球;兩球恰有一個(gè)白球;兩球至少有一個(gè)白球”中的() AB CD 解析 從口袋內(nèi)一次取出2個(gè)球,這個(gè)試驗(yàn)的所有結(jié)果有(白,白),(紅,紅),(黑,黑),(紅,白),(紅,黑),(黑,白),共6種結(jié)果,當(dāng)事件A“兩球都為白球”發(fā)生時(shí),不可能發(fā)生,故為互斥事件,且A不發(fā)生時(shí),不一定發(fā)生,不一定發(fā)生,故非對(duì)立事件,而A發(fā)生時(shí),可以發(fā)生,故不是互斥事件,故選A 答案 AD