2018年中考數(shù)學(xué)試題分類匯編 八上 第1章《勾股定理》 北師大版

上傳人:Sc****h 文檔編號(hào):81352893 上傳時(shí)間:2022-04-27 格式:DOC 頁數(shù):12 大小:306KB
收藏 版權(quán)申訴 舉報(bào) 下載
2018年中考數(shù)學(xué)試題分類匯編 八上 第1章《勾股定理》 北師大版_第1頁
第1頁 / 共12頁
2018年中考數(shù)學(xué)試題分類匯編 八上 第1章《勾股定理》 北師大版_第2頁
第2頁 / 共12頁
2018年中考數(shù)學(xué)試題分類匯編 八上 第1章《勾股定理》 北師大版_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2018年中考數(shù)學(xué)試題分類匯編 八上 第1章《勾股定理》 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018年中考數(shù)學(xué)試題分類匯編 八上 第1章《勾股定理》 北師大版(12頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 北師版數(shù)學(xué)八年級(jí)上冊第1章《勾股定理》 考點(diǎn)一:勾股定理 1.(2018?濱州)在直角三角形中,若勾為3,股為4,則弦為( ?。? A.5 B.6 C.7 D.8 【分析】直接根據(jù)勾股定理求解即可. 【解答】解:∵在直角三角形中,勾為3,股為4,∴弦的平方為32+42=25,弦長為5. 故選:A. 2.(2018?模擬)如圖,兩個(gè)較大正方形的面積分別為225,289,則字母A所代表的正方形的面積為( ?。? A.4 B.8 C.16

2、 D.64 【分析】根據(jù)正方形的面積等于邊長的平方,由正方形PQED的面積和正方形PRQF的面積分別表示出PR的平方及PQ的平方,又三角形PQR為直角三角形,根據(jù)勾股定理求出QR的平方,即為所求正方形的面積. 【解答】解:∵正方形PQED的面積等于225,∴即PQ2=225, ∵正方形PRGF的面積為289,∴PR2=289, 又△PQR為直角三角形,根據(jù)勾股定理得:PR2=PQ2+QR2, ∴QR2=PR2﹣PQ2=289﹣225=64,則正方形QMNR的面積為64. 故選:D. 3.(2018?模擬)如圖,小明將一張長為20cm,寬為15cm的長方形紙(AE>DE)

3、剪去了一角,量得AB=3cm,CD=4cm,則剪去的直角三角形的斜邊長為(  ) A.5cm B.12cm C.16cm D.20cm 【分析】解答此題只要把原來的圖形補(bǔ)全,構(gòu)造出直角三角形解答. 【解答】解:延長AB、DC相交于F,則BFC構(gòu)成直角三角形, 運(yùn)用勾股定理得:BC2=(15﹣3)2+(20﹣4)2=122+162=400,所以BC=20. 則剪去的直角三角形的斜邊長為20cm.故選:D. 4.(2018?模擬)如圖,在△ABC中,∠B=∠C,AD平分∠BAC,AB=5,BC=6,則AD=(  ) A.3

4、 B.4 C.5 D.6 【分析】先判定△ABC為等腰三角形,利用等腰三角形的性質(zhì)可求得BD,在Rt△ABD中利用勾股定理可求得AD的長. 【解答】解:∵∠B=∠C,∴AB=AC, ∵AD平分∠BAC,∴AD⊥BC,BD=CD=BC=3, 在Rt△ABD中,AB=5,BD=3,∴AD=4, 故選:B. 考點(diǎn)二:勾股定理得證明 1.(2018?瀘州)“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲.如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形.設(shè)直角三角形

5、較長直角邊長為a,較短直角邊長為b.若ab=8,大正方形的面積為25,則小正方形的邊長為( ?。? A.9 B.6 C.4 D.3 【分析】由題意可知:中間小正方形的邊長為:a﹣b,根據(jù)勾股定理以及題目給出的已知數(shù)據(jù)即可求出小正方形的邊長. 【解答】解:由題意可知:中間小正方形的邊長為:a﹣b, ∵每一個(gè)直角三角形的面積為:ab=×8=4,∴4×ab+(a﹣b)2=25, ∴(a﹣b)2=25﹣16=9,∴a﹣b=3, 故選:D. 2.(2018?期中)如圖是著名的趙爽弦圖,它是由四個(gè)全等的直角三

6、角形拼成,每個(gè)直角三角形的兩直角邊的長分別為a和b,斜邊長為c,請你用它驗(yàn)證勾股定理. 【分析】通過圖中小正方形面積證明勾股定理. 【解答】解:S小正方形=(b﹣a)2=b2﹣2ab+a2,另一方面S小正方形=c2﹣4×ab=c2﹣2ab, 即b2﹣2ab+a2=c2﹣2ab,∴a2+b2=c2. 3.(2018?期中)如圖:在Rt△ABC和Rt△BDE中,∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,試?yán)脠D形證明勾股定理. 【分析】由圖知,梯形的面積等于三個(gè)直角三角形的面積之和,用字母表示出來,化簡后,即證明勾股定理. 【解答】證明:∵

7、∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c, ∵Rt△ACB≌Rt△BDE,∴∠ABC=∠BED,∠BAC=∠EBD, ∵∠ABC+∠DBE=90°,∴∠ABE=90°, 三個(gè)Rt△其面積分別為ab,ab和c2. 直角梯形的面積為(a+b)(a+b). 由圖形可知:(a+b)(a+b)=ab+ab+c2, 整理得(a+b)2=2ab+c2,a2+b2+2ab=2ab+c2, ∴a2+b2=c2. 4.(2018?模擬)勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖1或

8、圖2擺放時(shí),都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程: 將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2 證明:連結(jié)DB,過點(diǎn)D作BC邊上的高DF,則DF=EC=b﹣a ∵S四邊形ADCB=S△ACD+S△ABC=b2+ab. 又∵S四邊形ADCB=S△ADB+S△DCB=c2+a(b﹣a), ∴b2+ab=c2+a(b﹣a), ∴a2+b2=c2. 請參照上述證法,利用圖2完成下面的證明. 將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2. 【分析】首先連結(jié)BD,過點(diǎn)B作DE邊上的

9、高BF,則BF=b﹣a,表示出S五邊形ACBED,兩者相等,整理即可得證. 【解答】證明:連結(jié)BD,過點(diǎn)B作DE邊上的高BF,則BF=b﹣a, ∵S五邊形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab, 又∵S五邊形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a), ∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2. 考點(diǎn)三:勾股定理的逆定理 1.(2018?南通)下列長度的三條線段能組成直角三角形的是( ?。? A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,1

10、2 【分析】利用勾股定理的逆定理:如果三角形兩條邊的平方和等于第三邊的平方,那么這個(gè)三角形就是直角三角形.最長邊所對的角為直角.由此判定即可. 【解答】解:A、∵32+42=52,∴三條線段能組成直角三角形,故A選項(xiàng)正確; B、∵22+32≠42,∴三條線段不能組成直角三角形,故B選項(xiàng)錯(cuò)誤; C、∵42+62≠72,∴三條線段不能組成直角三角形,故C選項(xiàng)錯(cuò)誤; D、∵52+112≠122,∴三條線段不能組成直角三角形,故D選項(xiàng)錯(cuò)誤; 故選:A. 2.(2018?模擬)如圖,長為8cm的橡皮筋放置在x軸上,固定兩端A和B,然后把中點(diǎn)C向上拉升3cm至D點(diǎn),則橡皮筋被拉長了(  

11、) A.2cm B.3cm C.4cm D.5cm 【分析】根據(jù)勾股定理,可求出AD、BD的長,則AD+BD﹣AB即為橡皮筋拉長的距離. 【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm; 根據(jù)勾股定理,得:AD2=AC2+CD2=25,CD=5cm; ∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉長了2cm. 故選:A. 3.(2018?期中)下列各組數(shù)中,不能作為直角三角形的三邊長的是(  ) A.1.5,2,3 B.6,8,10 C.5,12,13

12、 D.15,20,25 【分析】只要驗(yàn)證兩小邊的平方和等于最長邊的平方即可判斷三角形是不是直角三角形,據(jù)此進(jìn)行判斷. 【解答】解:A、(1.5)2+22≠32,不能構(gòu)成直角三角形,故本選項(xiàng)符合題意; B、62+82=100=102,能構(gòu)成直角三角形,故本選項(xiàng)不符合題意; C、52+122=169=132,能構(gòu)成直角三角形,故本選項(xiàng)不符合題意; D、152+202=252,能構(gòu)成直角三角形,故本選項(xiàng)符合題意; 故選:A. 4.(2018?期末)滿足下列條件的△ABC,不是直角三角形的是(  ) A.b2﹣c2=a2 B.a(chǎn):b:c=3:4:5 C.

13、∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:15 【分析】根據(jù)三角形內(nèi)角和定理、勾股定理的逆定理對各個(gè)選項(xiàng)分別進(jìn)行計(jì)算即可. 【解答】解:A.b2﹣c2=a2,則b2=a2+c2,△ABC是直角三角形; B.a:b:c=3:4:5,設(shè)a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形; C.∠C=∠A﹣∠B,則∠B=∠A+∠C,∠B=90°,△ABC是直角三角形; D.∠A:∠B:∠C=9:12:15,設(shè)∠A、∠B、∠C分別為9x、12x、15x,則9x+12x+15x=180°,解得,x=5°,則∠A、∠B、∠C分別為45°,60°,75°,△ABC

14、不是直角三角形; 故選:D. 5.(2018?期中)已知△ABC的三邊分別是6,8,10,則△ABC的面積是( ?。? A.24 B.30 C.40 D.48 【分析】因?yàn)椤鰽BC的三邊分別是6,8,10,根據(jù)勾股定理的逆定理可求出此三角形為直角三角形,根據(jù)三角形面積公式可求出面積. 【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面積=×6×8=24. 故選:A. 6.(2018?期中)已知△ABC的三邊長為a、b、c,滿足a+b=10,ab=18,c=8,則此三角形為

15、 三角形. 【分析】對原式進(jìn)行變形,發(fā)現(xiàn)三邊的關(guān)系符合勾股定理的逆定理,從而可判定其形狀. 【解答】解:∵a+b=10,ab=18,c=8, ∴(a+b)2﹣2ab=100﹣36=64,c2=64, ∴a2+b2=c2,∴此三角形是直角三角形. 故答案為:直角. 7.(2018?期末)觀察以下幾組勾股數(shù),并尋找規(guī)律: ①3,4,5; ②5,12,13; ③7,24,25; ④9,40,41;… 請你寫出有以上規(guī)律的第⑤組勾股數(shù): . 【分析】勾股定理和了解數(shù)的規(guī)律變化是解題關(guān)鍵. 【解答】解:從上邊可以發(fā)現(xiàn)

16、第一個(gè)數(shù)是奇數(shù),且逐步遞增2, 故第5組第一個(gè)數(shù)是11,又發(fā)現(xiàn)第二、第三個(gè)數(shù)相差為一, 故設(shè)第二個(gè)數(shù)為x,則第三個(gè)數(shù)為x+1, 根據(jù)勾股定理得:112+x2=(x+1)2,解得x=60, 則得第5組數(shù)是:11、60、61. 故答案為:11、60、61. 8.(2018?期中)如圖,△ABC中,D是BC上的一點(diǎn),若AB=10,BD=6,AD=8,AC=17,求△ABC的面積. 【分析】根據(jù)AB=10,BD=6,AD=8,利用勾股定理的逆定理求證△ABD是直角三角形,再利用勾股定理求出CD的長,然后利用三角形面積公式即可得出答案. 【解答】解:∵BD2+AD2=62+8

17、2=102=AB2, ∴△ABD是直角三角形,∴AD⊥BC, 在Rt△ACD中,CD2=AC2-AD2=225,CD=15, ∴S△ABC=BC?AD=(BD+CD)?AD=×21×8=84, 因此△ABC的面積為84. 答:△ABC的面積是84. 考點(diǎn)四:勾股定理的應(yīng)用 1.(2018?期末)如圖:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,則CE2+CF2等于(  ) A.75 B.100 C.120 D.125 【分析】根據(jù)角平分線的定義推出△E

18、CF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進(jìn)而可求出CE2+CF2的值. 【解答】解:∵CE平分∠ACB,CF平分∠ACD, ∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°, ∴△EFC為直角三角形, 又∵EF∥BC,CE平分∠ACB,CF平分∠ACD, ∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF, ∴CM=EM=MF=5,EF=10, 由勾股定理可知CE2+CF2=EF2=100. 故選:B. 2.(2018?模擬)一根高9m的旗桿在離地4m高處折斷,折斷處仍相連,此時(shí)在3.9m遠(yuǎn)處耍的身高

19、為1m的小明(  ) A.沒有危險(xiǎn) B.有危險(xiǎn) C.可能有危險(xiǎn) D.無法判斷 【分析】由勾股定理求出BC=4>3.9,即可得出結(jié)論. 【解答】解:如圖所示:AB=9﹣4=5,AC=4﹣1=3, 由勾股定理得:BC=4>3.9,∴此時(shí)在3.9m遠(yuǎn)處耍的身高為1m的小明有危險(xiǎn), 故選:B. 3.(2018?模擬)如圖所示,在長方形紙片ABCD中,AB=32cm,把長方形紙片沿AC折疊,點(diǎn)B落在點(diǎn)E處,AE交DC于點(diǎn)F,AF=25cm,則AD的長為( ?。? A.16cm B.20cm C.24cm D.28

20、cm 【分析】首先根據(jù)平行線的性質(zhì)以及折疊的性質(zhì)證明∠EAC=∠DCA,根據(jù)等角對等邊證明FC=AF,則DF即可求得,然后在直角△ADF中利用勾股定理求解. 【解答】解:∵長方形ABCD中,AB∥CD,∴∠BAC=∠DCA, 又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm, 又∵長方形ABCD中,DC=AB=32cm, ∴DF=DC﹣FC=32﹣25=7cm, 在直角△ADF中,AD=24(cm). 故選:C. 4.(2018?湘潭)《九章算術(shù)》是我國古代最重要的數(shù)學(xué)著作之一,在“勾股”章中記載了一道“折竹抵地”問題:“今有竹高一丈,末折抵地,去本三尺

21、,問折者高幾何?”翻譯成數(shù)學(xué)問題是:如圖所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的長,如果設(shè)AC=x,則可列方程為 . 【分析】設(shè)AC=x,可知AB=10﹣x,再根據(jù)勾股定理即可得出結(jié)論. 【解答】解:設(shè)AC=x,∵AC+AB=10,∴AB=10﹣x. ∵在Rt△ABC中,∠ACB=90°, ∴AC2+BC2=AB2,即x2+32=(10﹣x)2. 故答案為:x2+32=(10﹣x)2. 5.(2018?包頭)如圖,每個(gè)小正方形邊長為1,則△ABC邊AC上的高BD的長為   .

22、 【分析】根據(jù)網(wǎng)格,利用勾股定理求出AC的長,AB的長,以及AB邊上的高,利用三角形面積公式求出三角形ABC面積,而三角形ABC面積可以由AC與BD乘積的一半來求,利用面積法即可求出BD的長. 【解答】解:根據(jù)勾股定理得:AC=5, 由網(wǎng)格得:S△ABC=×2×4=4,且S△ABC=AC?BD=×5BD, ∴×5BD=4,解得:BD=. 故答案為: 6.(2018?黃岡)如圖,圓柱形玻璃杯高為14cm,底面周長為32cm,在杯內(nèi)壁離杯底5cm的點(diǎn)B處有一滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿3cm與蜂蜜相對的點(diǎn)A處,則螞蟻從外壁A處到內(nèi)壁B處的最短距離為

23、 cm(杯壁厚度不計(jì)). 【分析】將杯子側(cè)面展開,建立A關(guān)于EF的對稱點(diǎn)A′,根據(jù)兩點(diǎn)之間線段最短可知A′B的長度即為所求. 【解答】解:如圖: 將杯子側(cè)面展開,作A關(guān)于EF的對稱點(diǎn)A′, 連接A′B,則A′B即為最短距離,A′B2=A′D2+BD2=400,A′B=20(cm). 故答案為20. 7.(2018?期中)在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的數(shù)學(xué)問題:“今有池方兩丈,葭生其中央,出水兩尺,引葭赴岸,適與岸齊.問水深、葭長各幾何?”這個(gè)數(shù)學(xué)問題的意思是說:“有一個(gè)水池是邊長為2丈(1丈=10尺) 的正方形,在水池正中央長有一根蘆葦,蘆葦露出水

24、面2尺.如果把這根蘆葦拉向岸邊,它的頂端恰好到達(dá)岸邊的水面.請問這個(gè)水池的深度和這根蘆葦?shù)拈L度分別是多少?”答:這個(gè)水池的深度和這根蘆葦?shù)拈L度分別是 . 【分析】找到題中的直角三角形,設(shè)水深為x尺,根據(jù)勾股定理可得x2+()2=(x+1)2,再解答即可. 【解答】解;設(shè)水深為x尺,則蘆葦長為(x+1)尺, 根據(jù)勾股定理得:x2+()2=(x+1)2,解得:x=12, 蘆葦?shù)拈L度=x+1=12+1=13(尺), 答:水池深12尺,蘆葦長13尺. 故答案是:12尺;13尺. 8.(2018?期中)如圖,在Rt△ABC中,∠B=9

25、0°,AB=3,BC=4,將△ABC折疊,使點(diǎn)B恰好落在邊AC上,與點(diǎn)B′重合,AE為折痕,求EB′的長. 【分析】根據(jù)折疊得到BE=EB′,AB′=AB=3,設(shè)BE=EB′=x,則EC=4﹣x,根據(jù)勾股定理求得AC的值,再由勾股定理可得方程x2+22=(4﹣x)2,再解方程即可算出答案. 【解答】解:根據(jù)折疊可得BE=EB′,AB′=AB=3, 設(shè)BE=EB′=x,則EC=4﹣x, ∵∠B=90°,AB=3,BC=4, ∴在Rt△ABC中,由勾股定理得,AC=5,∴B′C=5﹣3=2, 在Rt△B′EC中,由勾股定理得,x2+22=(4﹣x)2, 解得x=1.5. 12

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!