2020年中考數(shù)學(xué)考點(diǎn)總動(dòng)員 第17講 特殊三角形(含解析)

上傳人:Sc****h 文檔編號:81863987 上傳時(shí)間:2022-04-28 格式:DOC 頁數(shù):15 大?。?88KB
收藏 版權(quán)申訴 舉報(bào) 下載
2020年中考數(shù)學(xué)考點(diǎn)總動(dòng)員 第17講 特殊三角形(含解析)_第1頁
第1頁 / 共15頁
2020年中考數(shù)學(xué)考點(diǎn)總動(dòng)員 第17講 特殊三角形(含解析)_第2頁
第2頁 / 共15頁
2020年中考數(shù)學(xué)考點(diǎn)總動(dòng)員 第17講 特殊三角形(含解析)_第3頁
第3頁 / 共15頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020年中考數(shù)學(xué)考點(diǎn)總動(dòng)員 第17講 特殊三角形(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020年中考數(shù)學(xué)考點(diǎn)總動(dòng)員 第17講 特殊三角形(含解析)(15頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、第17講 特殊三角形 【考點(diǎn)梳理】 1.等腰三角形 (1)性質(zhì): 等腰三角形的兩底角相等,兩腰相等; 等腰三角形的_高線_、中線、頂角平分線“三線合一”; 等腰三角形是軸對稱圖形,高線(或底邊中線、頂角平分線)所在直線是它的對稱軸. (2)判定: 有兩角相等的三角形是等腰三角形; 有_兩邊相等的三角形是等腰三角形. 2.等邊三角形 (1)性質(zhì):三邊相等,三個(gè)內(nèi)角都等于60°; 等邊三角形是軸對稱圖形,有_3__條對稱軸. (2)判定:三邊相等、三內(nèi)角相等或有一個(gè)角是60°的等腰三角形是等邊三角形. 3.直角三角形 (1)性質(zhì):①兩銳角之和等于

2、_90°_;②斜邊上的中線等于斜邊的一半;③30°的角所對應(yīng)的直角邊等于斜邊的_一半_;④勾股定理:若直角三角形的兩條直角邊分別為a,b,斜邊為c,則有a2+b2=c2. (2)判定:①有一個(gè)角是直角的三角形是直角三角形;②有兩個(gè)角互余的三角形是直角三角形;③勾股定理逆定理:如果三角形三邊長a,b,c滿足關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形;④一條邊上的中線等于這條邊的一半的三角形是直角三角形. 4.等腰直角三角形 (1)性質(zhì):兩直角邊相等_;兩銳角相等且都等于_45°_. (2)判定:有兩邊相等的直角三角形;有一個(gè)角為45°的直角三角形;頂角為90°的等腰三角形;有

3、兩個(gè)角是45°的三角形. 【高頻考點(diǎn)】 考點(diǎn)1: 等腰三角形的性質(zhì)及相關(guān)計(jì)算 【例題1】在△ABC中,AC=BC,∠ACB=120°,點(diǎn)D是線段AB上一動(dòng)點(diǎn)(D不與A,B重合). (1)如圖1,當(dāng)點(diǎn)D為AB的中點(diǎn),過點(diǎn)B作BF∥AC交CD的延長線于點(diǎn)F,求證:AC=BF; (2)連接CD.作∠CDE=30°,DE交AC于點(diǎn)E.若DE∥BC時(shí),如圖2. ①∠CDB=120°; ②求證:△ADE為等腰三角形; ③在點(diǎn)D的運(yùn)動(dòng)過程中,△ECD的形狀可以是等腰三角形嗎?若可以,請求出∠AED的度數(shù);若不可以,請說明理由. 【解答】 解:(1)證明:∵CA=CB,CD是△ABC的

4、中線,∴AD=BD. ∵BF∥AC,∴∠A=∠FBD. ∵∠ADC=∠BDF,∴△ACD≌△BFD.∴AC=BF. (2)②證明:∵AC=BC,∴∠A=∠B. ∵DE∥BC,∴∠EDA=∠B. ∴∠A=∠EDA,∴△ADE為等腰三角形. ③△ECD可以是等腰三角形.理由如下: Ⅰ.當(dāng)∠CDE=∠ECD時(shí),EC=DE,∴∠ECD=∠CDE=30°. ∵∠AED=∠ECD+∠CDE, ∴∠AED=60°. Ⅱ.當(dāng)∠ECD=∠CED時(shí),CD=DE,∵∠ECD+∠CED+∠CDE=180°, ∴∠CED==75°.∴∠AED=180°-∠CED=105°. Ⅲ.當(dāng)∠CED=∠C

5、DE時(shí),EC=CD,∠ACD=180°-∠CED-∠CDE=180°-30°-30°=120°, ∵∠ACB=120°, ∴此時(shí),點(diǎn)D與點(diǎn)B重合,不合題意. 綜上,△ECD可以是等腰三角形,此時(shí)∠AED的度數(shù)為60°或105°. 歸納:在以等腰三角形為背景求線段長的問題中,最常用的工具為“等腰三角形三線合一”,由此可以找到相應(yīng)的角度、線段長度以及垂直關(guān)系,進(jìn)而可通過三角形全等、相似、勾股定理等求解,若已知圖形中有兩個(gè)中點(diǎn)時(shí),常用中位線的性質(zhì)得到線段平行和數(shù)量關(guān)系. 考點(diǎn)2: 等邊三角形的性質(zhì)及相關(guān)計(jì)算 【例題2】(2018·河北模擬)如圖1,在等邊△ABC和等邊△ADP中,AB=2

6、,點(diǎn)P在△ABC的高CE上(點(diǎn)P與點(diǎn)C不重合),點(diǎn)D在點(diǎn)P的左側(cè),連接BD,ED. (1)求證:BD=CP; (2)當(dāng)點(diǎn)P與點(diǎn)E重合時(shí),延長CE交BD于點(diǎn)F,請你在圖2中作出圖形,并求出BF的長; (3)直接寫出線段DE長度的最小值. 【解析】:(1)證明:∵△ABC是等邊三角形, ∴AB=AC,∠BAC=60°. ∵△ADP是等邊三角形, ∴AD=AP,∠DAP=60°. ∴∠DAB+∠BAP=∠BAP+∠CAP. ∴∠DAB=∠CAP. ∴△DAB≌△PAC(SAS). ∴BD=CP. (2)如圖2,∵△ADP是等邊三角形, ∴當(dāng)點(diǎn)P與點(diǎn)E重合時(shí),有AE=DE

7、,∠AED=60°. ∵CE⊥AB, ∴AE=BE=DE,∠BCE=∠ACB=30°. ∴∠EBD=30°.∴∠DBC=90°. 在Rt△BCF中,∵BC=2,tan∠BCE=, ∴BF=2tan30°=. (3)DE長度的最小值是,理由:如圖3,由(1)知:△DAB≌△PAC,∴取AC的中點(diǎn)F,連接PF,則PF=DE,∴PF長度的最小值就是DE長度的最小值,過點(diǎn)F作FG⊥CE于點(diǎn)G,垂足G就是PF最小時(shí)點(diǎn)P的位置,此時(shí)PF=,故DE長度的最小值是. 歸納:對于等邊三角形的問題主要考查三邊關(guān)系與三角的特殊之處,判定時(shí)注意兩個(gè)角為60°的三角形為等邊三角形,抓住特殊求三角形高等

8、線段長度即可得到。 考點(diǎn)3: 直角三角形的性質(zhì)及相關(guān)計(jì)算 【例題3】(2018·保定模擬)勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰一靈感,他驚喜地發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程: 將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2. 證明:連接DB,過點(diǎn)D作BC邊上的高DF,則DF=EC=b-a. ∵S四邊形ADCB=S△ACD+S△ABC=b2+ab, 又∵S四邊形ADCB=S△ADB+S△DCB=c2+a(b-a), ∴b2+ab=

9、c2+a(b-a). ∴a2+b2=c2. 請參照上述證法,利用圖2完成下面的證明. 將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2. 證明:連接BD,過點(diǎn)B作DE邊上的高BF,則BF=b-a. ∵S五邊形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab, 又∵S五邊形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b-a), ∴ab+b2+ab=ab+c2+a(b-a). ∴a2+b2=c2. 歸納:解決與直角三角形有關(guān)的計(jì)算:(1)若直角三角形中含有30°角時(shí),可考慮利用30°角所對的直角邊是斜邊的一

10、半;(2)若直角三角形出現(xiàn)中線時(shí),可考慮利用直角三角形斜邊上的中線等于斜邊的一半進(jìn)行求解;(3)計(jì)算有關(guān)線段長問題,如果所求線段是在直角三角形或可通過作輔助線作出含可求出兩邊的直角三角形中,一般應(yīng)用勾股定理求解,即直角三角形斜邊的平方等于兩直角邊的平方之和. 【自我檢測】 一、選擇題: 1. (2017湖北荊州)如圖,在△ABC中,AB=AC,∠A=30°,AB的垂直平分線l交AC于點(diǎn)D,則∠CBD的度數(shù)為(  ) A.30° B.45° C.50° D.75° 【答案】B 【解答】解:∵AB=AC,∠A=30°, ∴∠ABC=∠ACB=75°, ∵AB的垂直平分線交AC于

11、D, ∴AD=BD, ∴∠A=∠ABD=30°, ∴∠BDC=60°, ∴∠CBD=180°﹣75°﹣60°=45°. 故選B. 2. 如圖,在△ABC中,AB=AC,∠A=30°,AB的垂直平分線l交AC于點(diǎn)D,則∠CBD的度數(shù)為( ?。? A.30° B.45° C.50° D.75° 【答案】B 【解答】解:∵AB=AC,∠A=30°, ∴∠ABC=∠ACB=75°, ∵AB的垂直平分線交AC于D, ∴AD=BD, ∴∠A=∠ABD=30°, ∴∠BDC=60°, ∴∠CBD=180°﹣75°﹣60°=45°. 故選B. 3. (2017畢節(jié))如圖,在

12、正方形ABCD中,點(diǎn)E,F(xiàn)分別在BC,CD上,且∠EAF=45°,將△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,使點(diǎn)E落在點(diǎn)E'處,則下列判斷不正確的是( ?。? A.△AEE′是等腰直角三角形 B.AF垂直平分EE' C.△E′EC∽△AFD D.△AE′F是等腰三角形 【答案】D 【解答】解:∵將△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,使點(diǎn)E落在點(diǎn)E'處, ∴AE′=AE,∠E′AE=90°, ∴△AEE′是等腰直角三角形,故A正確; ∵將△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,使點(diǎn)E落在點(diǎn)E'處, ∴∠E′AD=∠BAE, ∵四邊形ABCD是正方形, ∴∠DAB=90°, ∵∠EAF=45°

13、, ∴∠BAE+∠DAF=45°, ∴∠E′AD+∠FAD=45°, ∴∠E′AF=∠EAF, ∵AE′=AE, ∴AF垂直平分EE',故B正確; ∵AF⊥E′E,∠ADF=90°, ∴∠FE′E+∠AFD=∠AFD+∠DAF, ∴∠FE′E=∠DAF, ∴△E′EC∽△AFD,故C正確; ∵AD⊥E′F,但∠E′AD不一定等于∠DAE′, ∴△AE′F不一定是等腰三角形,故D錯(cuò)誤; 故選D. 4. (2019?浙江衢州?3分)“三等分角”大約是在公元前五世紀(jì)由古希臘人提出來的。借助如圖所示的“三等分角儀”能三等分任一角。這個(gè)三等分角儀由兩根有槽的棒OA,OB組成

14、,兩根棒在O點(diǎn)相連并可繞O轉(zhuǎn)動(dòng),C點(diǎn)固定,OC=CD=DE,點(diǎn)D,E可在槽中滑動(dòng),若∠BDE=75°,則∠CDE的度數(shù)是( ? ?) A.?60°???B.?65°????C.?75°????D.?80° 【答案】 D 【解析】【解答】解:∵OC=CD=DE, ∴∠O=∠ODC,∠DCE=∠DEC, 設(shè)∠O=∠ODC=x, ∴∠DCE=∠DEC=2x, ∴∠CDE=180°-∠DCE-∠DEC=180°-4x, ∵∠BDE=75°, ∴∠ODC+∠CDE+∠BDE=180°, 即x+180°-4x+75°=180°, 解得:x=25°, ∠CDE=18

15、0°-4x=80°. 故答案為:D. 5. (2019?湖南邵陽?3分)如圖,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜邊BC上的中線,將△ACD沿AD對折,使點(diǎn)C落在點(diǎn)F處,線段DF與AB相交于點(diǎn)E,則∠BED等于( ?。? A.120° B.108° C.72° D.36° 【答案】B 【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°, ∴∠C=90°﹣∠B=54°. ∵AD是斜邊BC上的中線, ∴AD=BD=CD, ∴∠BAD=∠B=36°,∠DAC=∠C=54°, ∴∠ADC=180°﹣∠DAC﹣∠C=72°. ∵將△ACD沿AD對

16、折,使點(diǎn)C落在點(diǎn)F處, ∴∠ADF=∠ADC=72°, ∴∠BED=∠BAD+∠ADF=36°+72°=108°. 故選:B. 二、填空題: 6. 如圖,在等邊三角形ABC中,點(diǎn)D是邊BC的中點(diǎn),則∠BAD= 30°?。? 【答案】30° 【解答】解:∵△ABC是等邊三角形, ∴∠BAC=60°,AB=AC. 又點(diǎn)D是邊BC的中點(diǎn), ∴∠BAD=∠BAC=30°. 故答案是:30°. 7. (2019?貴州畢節(jié)?5分)如圖,以△ABC的頂點(diǎn)B為圓心,BA長為半徑畫弧,交BC邊于點(diǎn)D,連接AD.若∠B=40°,∠C=36°,則∠DAC的大小為 34°?。? 【答案】

17、34°. 【解答】解:∵∠B=40°,∠C=36°, ∴∠BAC=180°﹣∠B﹣∠C=104° ∵AB=BD ∴∠BAD=∠ADB=(180°﹣∠B)÷2=70°, ∴∠DAC=∠BAC﹣∠BAD=34° 故答案為:34°. 8. 如圖,AB⊥BC,AD⊥DC,∠BAD=130°,在BC、CD上分別找一點(diǎn)E、F,當(dāng)△AEF周長最小時(shí),∠AEF+∠AFE的度數(shù)是   . 【答案】80°. 【解答】解:作A關(guān)于BC和CD的對稱點(diǎn)A′,A″,連接A′A″,交BC于E,交CD于F, 則A′A″即為△AEF的周長最小值.作DA延長線AH, ∵∠DAB=130°, ∴∠A′

18、+∠A″=50°, ∵∠A′=∠FAA′,∠EAD=∠A″, ∴∠FAA′+∠A″AE=50°, ∴∠EAF=130°﹣50°=80°, 故答案為:80°. 9. (2019?黑龍江哈爾濱?3分)如圖,在四邊形ABCD中,AB=AD,BC=DC,∠A=60°,點(diǎn)E為AD邊上一點(diǎn),連接BD.CE,CE與BD交于點(diǎn)F,且CE∥AB,若AB=8,CE=6,則BC的長為 ?。? 【答案】2 【解答】解:如圖,連接AC交BD于點(diǎn)O ∵AB=AD,BC=DC,∠A=60°, ∴AC垂直平分BD,△ABD是等邊三角形 ∴∠BAO=∠DAO=30°,AB=AD=BD=8, BO

19、=OD=4 ∵CE∥AB ∴∠BAO=∠ACE=30°,∠CED=∠BAD=60° ∴∠DAO=∠ACE=30° ∴AE=CE=6 ∴DE=AD﹣AE=2 ∵∠CED=∠ADB=60° ∴△EDF是等邊三角形 ∴DE=EF=DF=2 ∴CF=CE﹣EF=4,OF=OD﹣DF=2 ∴OC= ∴BC= 三、解答題: 10. (2019?湖北武漢?8分)如圖是由邊長為1的小正方形構(gòu)成的網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).四邊形ABCD的頂點(diǎn)在格點(diǎn)上,點(diǎn)E是邊DC與網(wǎng)格線的交點(diǎn).請選擇適當(dāng)?shù)母顸c(diǎn),用無刻度的直尺在網(wǎng)格中完成下列畫圖,保留連線的痕跡,不要求說明理由. (1)如圖

20、1,過點(diǎn)A畫線段AF,使AF∥DC,且AF=DC. (2)如圖1,在邊AB上畫一點(diǎn)G,使∠AGD=∠BGC. (3)如圖2,過點(diǎn)E畫線段EM,使EM∥AB,且EM=AB. 【分析】(1)作平行四邊形AFCD即可得到結(jié)論; (2)根據(jù)等腰三角形的性質(zhì)和對頂角的性質(zhì)即可得到結(jié)論; (3)作平行四邊形AEMB即可得到結(jié)論. 【解答】解:(1)如圖所示,線段AF即為所求; (2)如圖所示,點(diǎn)G即為所求; (3)如圖所示,線段EM即為所求. 11. (2018·嘉興)如圖,在△ABC中,AB=AC,D為AC的中點(diǎn),DE⊥AB,DF⊥BC,垂足分別為E,F(xiàn),且DE=DF.求證:△

21、ABC是等邊三角形. 證明:∵DE⊥AB,DF⊥BC, ∴∠AED=∠CFD=90°. ∵D為AC的中點(diǎn),∴AD=DC. 在Rt△ADE和Rt△CDF中, ∴Rt△ADE≌Rt△CDF(HL). ∴∠A=∠C.∴BA=BC. ∵AB=AC,∴AB=BC=AC. ∴△ABC是等邊三角形. 12. (2018·湖北省孝感·7分)如圖,△ABC中,AB=AC,小聰同學(xué)利用直尺和圓規(guī)完成了如下操作: ①作∠BAC的平分線AM交BC于點(diǎn)D; ②作邊AB的垂直平分線EF,EF與AM相交于點(diǎn)P; ③連接PB,PC. 請你觀察圖形解答下列問題: (1)線段PA,PB,PC之

22、間的數(shù)量關(guān)系是 PA=PB=PC ; (2)若∠ABC=70°,求∠BPC的度數(shù). 【分析】(1)根據(jù)線段的垂直平分線的性質(zhì)可得:PA=PB=PC; (2)根據(jù)等腰三角形的性質(zhì)得:∠ABC=∠ACB=70°,由三角形的內(nèi)角和得:∠BAC=180°﹣2×70°=40°,由角平分線定義得:∠BAD=∠CAD=20°,最后利用三角形外角的性質(zhì)可得結(jié)論. 【解答】解:(1)如圖,PA=PB=PC,理由是: ∵AB=AC,AM平分∠BAC, ∴AD是BC的垂直平分線, ∴PB=PC, ∵EP是AB的垂直平分線, ∴PA=PB, ∴PA=PB=PC; 故答案為:PA=PB=PC;

23、 (2)∵AB=AC, ∴∠ABC=∠ACB=70°, ∴∠BAC=180°﹣2×70°=40°, ∵AM平分∠BAC, ∴∠BAD=∠CAD=20°, ∵PA=PB=PC, ∴∠ABP=∠BAP=∠ACP=20°, ∴∠BPC=∠ABP+∠BAC+∠ACP=20°+40°+20°=80°. 13. 如圖,△ABC和△AOD是等腰直角三角形,AB=AC,AO=AD,∠BAC=∠OAD=90°,點(diǎn)O是△ABC內(nèi)的一點(diǎn),∠BOC=130°. (1)求證:OB=DC; (2)求∠DCO的大??; (3)設(shè)∠AOB=α,那么當(dāng)α為多少度時(shí),△COD是等腰三角形. 【解答】(

24、1)證明: ∵∠BAC=∠OAD=90° ∴∠BAC﹣∠CAO=∠OAD﹣∠CAO ∴∠DAC=∠OAB 在△AOB與△ADC中 ∴△AOB≌△ADC, ∴OB=DC; (2)∵∠BOC=130°, ∴∠BOA+∠AOC=360°﹣130°=230°, ∵△AOB≌△ADC ∠AOB=∠ADC, ∴∠ADC+∠AOC=230°, 又∵△AOD是等腰直角三角形, ∴∠DAO=90°, ∴四邊形AOCD中,∠DCO=360°﹣90°﹣230°=40°; (3)當(dāng)CD=CO時(shí), ∴∠CDO=∠COD===70° ∵△AOD是等腰直角三角形, ∴∠ODA=45°, ∴∠CDA=∠CDO+∠ODA=70°+45°=115° 又∠AOB=∠ADC=α ∴α=115°; 當(dāng)OD=CO時(shí), ∴∠DCO=∠CDO=40° ∴∠CDA=∠CDO+∠ODA=40°+45°=85° ∴α=85°; 當(dāng)CD=OD時(shí), ∴∠DCO=∠DOC=40° ∠CDO=180°﹣∠DCO﹣∠DOC =180°﹣40°﹣40° =100° ∴∠CDA=∠CDO+∠ODA=100°+45°=145° ∴α=145°; 綜上所述:當(dāng)α的度數(shù)為115°或85°或145°時(shí),△AOD是等腰三角形. 15

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!