2020年高考數(shù)學(xué)三輪沖刺 點(diǎn)對點(diǎn)試卷 概率與統(tǒng)計(jì)(無答案)理
概率與統(tǒng)計(jì)(理)
1.某工廠有120名工人,其年齡都在20~ 60歲之間,各年齡段人數(shù)按[20,30),[30,40),[40,50),[50,60]分成四組,其頻率分布直方圖如下圖所示.工廠為了開發(fā)新產(chǎn)品,引進(jìn)了新的生產(chǎn)設(shè)備,要求每個(gè)工人都要參加A、B兩項(xiàng)培訓(xùn),培訓(xùn)結(jié)束后進(jìn)行結(jié)業(yè)考試。已知各年齡段兩項(xiàng)培訓(xùn)結(jié)業(yè)考試成績優(yōu)秀的人數(shù)如下表所示。假設(shè)兩項(xiàng)培訓(xùn)是相互獨(dú)立的,結(jié)業(yè)考試也互不影響。
年齡分組
A項(xiàng)培訓(xùn)成績
優(yōu)秀人數(shù)
B項(xiàng)培訓(xùn)成績
優(yōu)秀人數(shù)
[20,30)
27
16
[30,40)
28
18
[40,50)
16
9
[50,60]
6
4
(1)若用分層抽樣法從全廠工人中抽取一個(gè)容量為40的樣本,求四個(gè)年齡段應(yīng)分別抽取的人數(shù);
(2)根據(jù)頻率分布直方圖,估計(jì)全廠工人的平均年齡;
(3)隨機(jī)從年齡段[20,30)和[40,50)中各抽取1人,設(shè)這兩人中A、B兩項(xiàng)培訓(xùn)結(jié)業(yè)考試成績都優(yōu)秀的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
2.某保險(xiǎn)公司對一個(gè)擁有20000人的企業(yè)推出一款意外險(xiǎn)產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金,保險(xiǎn)公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的賠付頻率如下表(并以此估計(jì)賠付概率):
已知三類工種職工每人每年保費(fèi)分別為25元、25元、40元,出險(xiǎn)后的賠償金額分別為100萬元、100萬元、50萬元,保險(xiǎn)公司在開展此項(xiàng)業(yè)務(wù)過程中的固定支出為每年10萬元.
(1)求保險(xiǎn)公司在該業(yè)務(wù)所或利潤的期望值;
(2)現(xiàn)有如下兩個(gè)方案供企業(yè)選擇:
方案1:企業(yè)不與保險(xiǎn)公司合作,職工不交保險(xiǎn),出意外企業(yè)自行拿出與保險(xiǎn)公司提供的等額賠償金賠償付給意外職工,企業(yè)開展這項(xiàng)工作的固定支出為每年12萬元;
方案2:企業(yè)與保險(xiǎn)公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的70%,職工個(gè)人負(fù)責(zé)保費(fèi)的30%,出險(xiǎn)后賠償金由保險(xiǎn)公司賠付,企業(yè)無額外專項(xiàng)開支.
請根據(jù)企業(yè)成本差異給出選擇合適方案的建議.
3.根據(jù)以往的經(jīng)驗(yàn),某建筑工程施工期間的降水量(單位:)對工期的影響如下表:
降水量
工期延誤天數(shù)
0
1
3
6
根據(jù)某氣象站的資料,某調(diào)查小組抄錄了該工程施工地某月前天的降水量的數(shù)據(jù),繪制得到降水量的折線圖,如下圖所示.
(1)根據(jù)降水量的折線圖,分別求該工程施工延誤天數(shù)的頻率;
(2)以(1)中的頻率作為概率,求工期延誤天數(shù)的分布列及數(shù)學(xué)期望與方差.
4.在黨的第十九次全國代表大會(huì)上,習(xí)近平總書記指出:“房子是用來住的,不是用來炒的”.為了使房價(jià)回歸到收入可支撐的水平,讓全體人民住有所居,近年來全國各一、二線城市打擊投機(jī)購房,陸續(xù)出臺(tái)了住房限購令.某市一小區(qū)為了進(jìn)一步了解已購房民眾對市政府出臺(tái)樓市限購令的認(rèn)同情況,隨機(jī)抽取了本小區(qū) 50 戶住戶進(jìn)行調(diào)查,各戶人平均月收入(單位:千元,)的戶數(shù)頻率分布直方圖如下圖:
其中,贊成限購的戶數(shù)如下表:
人平均月收入
贊成戶數(shù)
4
9
12
6
3
1
(1)求人平均月收入在的戶數(shù),若從他們中隨機(jī)抽取兩戶,求所抽取的兩戶都贊成樓市限購令的概率;
(2)求所抽取的 50戶的人平均月收入的平均數(shù);
(3)若將小區(qū)人平均月收入不低于7千元的住戶稱為“高收入戶”,人平均月收入低于7千元的住戶稱為“非高收入戶”.根據(jù)已知條件完成如圖所給的列聯(lián)表,并說明能否在犯錯(cuò)誤的概率不超過 0.01 的前提下認(rèn)為“收入的高低”與“贊成樓市限購令”有關(guān).
非高收入戶
高收入戶
總計(jì)
贊成
不贊成
總計(jì)
附:臨界值表
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
參考公式:.
5.從某工廠的一個(gè)車間抽取某種產(chǎn)品件,產(chǎn)品尺寸(單位:)落在各個(gè)小組的頻數(shù)分布如下表:
數(shù)據(jù)分組
頻數(shù)
8
9
3
(1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在的概率;
(2)求這件產(chǎn)品尺寸的樣本平均數(shù);(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)
(3)根據(jù)頻數(shù)分布對應(yīng)的直方圖,可以認(rèn)為這種產(chǎn)品尺寸服從正態(tài)分布,其中u近似為樣本平均值,近似為樣本方差,經(jīng)過計(jì)算得,利用該正態(tài)分布,求.
附:①若隨機(jī)變量服從正態(tài)分布,則,;②.
6.上周某校高三年級學(xué)生參加了數(shù)學(xué)測試,年部組織任課教師對這次考試進(jìn)行成績分析.現(xiàn)從中抽取80名學(xué)生的數(shù)學(xué)成績(均為整數(shù))的頻率分布直方圖如圖所示.
(Ⅰ)估計(jì)這次月考數(shù)學(xué)成績的平均分和眾數(shù);
(Ⅱ)假設(shè)抽出學(xué)生的數(shù)學(xué)成績在段各不相同,且都超過94分.若將頻率視為概率,現(xiàn)用簡單隨機(jī)抽樣的方法,從95,96,97,98,99,100這6個(gè)數(shù)字中任意抽取2個(gè)數(shù),有放回地抽取3次,記這3次抽取中恰好有兩名學(xué)生的數(shù)學(xué)成績的次數(shù)為,求的分布列和期望.
7.某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級如下表:
質(zhì)量指標(biāo)值
等級
三等品
二等品
一等品
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:
(Ⅰ)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品92%”的規(guī)定?
(Ⅱ)在樣本中,按產(chǎn)品等級用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(Ⅲ)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動(dòng),活動(dòng)后在抽樣檢測,產(chǎn)品質(zhì)量指標(biāo)值近似滿足,則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?
8.某儀器經(jīng)過檢驗(yàn)合格才能出廠,初檢合格率為:若初檢不合格,則需要進(jìn)行調(diào)試,經(jīng)調(diào)試后再次對其進(jìn)行檢驗(yàn);若仍不合格,作為廢品處理,再檢合格率為.每臺(tái)儀器各項(xiàng)費(fèi)用如表:
項(xiàng)目
生產(chǎn)成本
檢驗(yàn)費(fèi)/次
調(diào)試費(fèi)
出廠價(jià)
金額(元)
1000
100
200
3000
(Ⅰ)求每臺(tái)儀器能出廠的概率;
(Ⅱ)求生產(chǎn)一臺(tái)儀器所獲得的利潤為1600元的概率(注:利潤出廠價(jià)生產(chǎn)成本檢驗(yàn)費(fèi)調(diào)試費(fèi));
(Ⅲ)假設(shè)每臺(tái)儀器是否合格相互獨(dú)立,記為生產(chǎn)兩臺(tái)儀器所獲得的利潤,求的分布列和數(shù)學(xué)期望.
9.隨著社會(huì)發(fā)展,淮北市在一天的上下班時(shí)段也出現(xiàn)了堵車嚴(yán)重的現(xiàn)象.交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念.記交通指數(shù)為T,其范圍為[0,10],分別有5個(gè)級別:T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶拢绺叻鍟r(shí)段(T≥3 ),從淮北市交通指揮中心隨機(jī)選取了一至四馬路之間50個(gè)交通路段,依據(jù)交通指數(shù)數(shù)據(jù)繪制的直方圖如圖所示:
(I)據(jù)此直方圖估算交通指數(shù)T∈[4,8)時(shí)的中位數(shù)和平均數(shù);
(II)據(jù)此直方圖求出早高峰一至四馬路之間的3個(gè)路段至少有2個(gè)嚴(yán)重?fù)矶碌母怕适嵌嗌伲?
(III)某人上班路上所用時(shí)間若暢通時(shí)為20分鐘,基本暢通為30分鐘,輕度擁堵為35分鐘,中度擁堵為45分鐘,嚴(yán)重?fù)矶聻?0分鐘,求此人用時(shí)間的數(shù)學(xué)期望.
10.為調(diào)查某地人群年齡與高血壓的關(guān)系,用簡單隨機(jī)抽樣方法從該地區(qū)年齡在20~60歲的人群中抽取200人測量血壓,結(jié)果如下:
高血壓
非高血壓
總計(jì)
年齡20到39歲
12
100
年齡40到60歲
52
100
總計(jì)
60
200
(1)計(jì)算表中的、、值;是否有99%的把握認(rèn)為高血壓與年齡有關(guān)?并說明理由.
(2)現(xiàn)從這60名高血壓患者中按年齡采用分層抽樣的方法抽取5人,再從這5人中隨機(jī)抽取2人,求恰好一名患者年齡在20到39歲的概率.
附參考公式及參考數(shù)據(jù): =
P(k2≥k0)
0.100
0.050
0.025
0.010
0.001
k0
2.706
3.841
5.024
6.635
10.828
11.近年來,空氣質(zhì)量成為人們越來越關(guān)注的話題,空氣質(zhì)量指數(shù)(,簡稱)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照大小分為六級, 為優(yōu); 為良; 為輕度污染; 為中度污染; 為重度污染;大于300為嚴(yán)重污染.環(huán)保部門記錄了2020年某月哈爾濱市10天的的莖葉圖如下:
(1)利用該樣本估計(jì)該地本月空氣質(zhì)量優(yōu)良()的天數(shù);(按這個(gè)月總共30天計(jì)算)
(2)現(xiàn)工作人員從這10天中空氣質(zhì)量為優(yōu)良的日子里隨機(jī)抽取2天進(jìn)行某項(xiàng)研究,求抽取的2天中至少有一天空氣質(zhì)量是優(yōu)的概率;
(3)將頻率視為概率,從本月中隨機(jī)抽取3天,記空氣質(zhì)量優(yōu)良的天數(shù)為,求的概率分布列和數(shù)學(xué)期望.
12. “微信運(yùn)動(dòng)”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
(1)若采用樣本估計(jì)總體的方式,試估計(jì)小王的所有微信好友中每日走路步數(shù)超過5000步的概率;
(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?
附: ,
0.10
0.05
0.025
0.010
2.706
3.841
5.024
6.635
13.山西某公司有一批專業(yè)技術(shù)人員,對他們進(jìn)行年齡狀況和接受教育程度(本科學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:
學(xué)歷
35歲以下
3550歲
50歲以上
本科
80
30
20
研究生
20
(Ⅰ)用分層抽樣的方法在歲年齡段的專業(yè)技術(shù)人員中抽取一個(gè)容量為10的樣本,將該樣本看成一個(gè)總體,從中任取3人,求至少有1人的學(xué)歷為研究生的概率;
(Ⅱ)在這個(gè)公司的專業(yè)技術(shù)人員中按年齡狀況用分層抽樣的方法抽取個(gè)人,其中35歲以下48人,50歲以上10人,再從這個(gè)人中隨機(jī)抽取出1人,此人的年齡為50歲以上的概率為,求、的值.
14.為研究男女同學(xué)空間想象能力的差異,孫老師從高一年級隨機(jī)選取了20名男生、20名女生,進(jìn)行空間圖形識(shí)別測試,得到成績莖葉圖如下,假定成績大于等于80分的同學(xué)為“空間想象能力突出”,低于80分的同學(xué)為“空間想象能力正?!?
(1)完成下面列聯(lián)表,并判斷是否有的把握認(rèn)為“空間想象能力突出”與性別有關(guān);
空間想象能力突出
空間想象能力正常
合計(jì)
男生
女生
合計(jì)
(2)從“空間想象能力突出”的同學(xué)中隨機(jī)選取男生2名、女生2名,記其中成績超過90分的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
下面公式及臨界值表僅供參考:
0.100
0.050
0.010
2.706
3.841
6.635
15.王明參加某衛(wèi)視的闖關(guān)活動(dòng),該活動(dòng)共3關(guān).設(shè)他通過第一關(guān)的概率為0.8,通過第二、第三關(guān)的概率分別為p,q,其中,并且是否通過不同關(guān)卡相互獨(dú)立.記ξ為他通過的關(guān)卡數(shù),其分布列為:
ξ
0
1
2
3
P
0.048
a
b
0.192
(Ⅰ)求王明至少通過1個(gè)關(guān)卡的概率;
(Ⅱ)求p,q的值.
16.某校為了提高學(xué)生身體素質(zhì),決定組建學(xué)校足球隊(duì),學(xué)校為了解報(bào)名學(xué)生的身體素質(zhì),對他們的體重進(jìn)行了測量,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右3個(gè)小組的頻率之比為,其中第2小組的頻數(shù)為.
(Ⅰ)求該校報(bào)名學(xué)生的總?cè)藬?shù);
(Ⅱ)若從報(bào)名的學(xué)生中任選3人,設(shè)表示體重超過60kg的學(xué)生人數(shù),求的數(shù)學(xué)期望與方差.
17. 某市舉行青年教師數(shù)學(xué)解題大賽,從中隨機(jī)抽取30名老師,將他們的競賽成績(滿分100分,成績均為不低于30分的整數(shù))分成六段:,,…,后得到如圖的頻率分布直方圖.
(Ⅰ)在這30名老師中隨機(jī)抽取3名老師.求的值,以及同時(shí)滿足下列兩個(gè)條件的概率:①有且僅有1名老師成績不低于90分;②成績在內(nèi)至多1名老師;
(Ⅱ)在成績在內(nèi)的老師中隨機(jī)抽取3名老師進(jìn)行診斷調(diào)查,設(shè)成績在內(nèi)的人數(shù)為隨機(jī)變量,求的分布列及其期望.
18. 根據(jù)我國發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》指出空氣質(zhì)量指數(shù)在為優(yōu)秀,人類可正?;顒?dòng).某市環(huán)保局對該市2020年進(jìn)行為期一年的空氣質(zhì)量監(jiān)測,得到每天的空氣質(zhì)量指數(shù),從中隨機(jī)抽取50個(gè)作為樣本進(jìn)行分析報(bào)告,樣本數(shù)據(jù)分組區(qū)間為,, , ,由此得到樣本的空氣質(zhì)量指數(shù)頻率分布直方圖.
(Ⅰ)若空氣質(zhì)量指數(shù)大于或等于15分且小于35認(rèn)為是良好的,求該市在這次監(jiān)測中空氣質(zhì)量
良好的天數(shù),并根據(jù)頻率分布直方圖估計(jì)這一年度的空氣質(zhì)量指數(shù)的平均值;
(Ⅱ)如果空氣質(zhì)量指數(shù)不超過15,就認(rèn)定空氣質(zhì)量為“優(yōu)”,則從這一年的監(jiān)測數(shù)據(jù)中隨機(jī)
抽取3天的數(shù)值,其中達(dá)到“優(yōu)”的天數(shù)為,求的分布列和數(shù)學(xué)期望.
19. 2020年3月15日,中央電視臺(tái)揭露部分汽車4S店維修黑幕,國家工商總局針對汽車制造行業(yè)中的壟斷行為加大了調(diào)查力度,對汽車零部件加工的相關(guān)企業(yè)開出了巨額罰單.某品牌汽車制造商為了壓縮成本,計(jì)劃對、、三種汽車零部件進(jìn)行招標(biāo)采購,某著名汽車零部件加工廠參入了該次競標(biāo),已知種零部件中標(biāo)后即可簽合同,而、兩種汽車零部件具有很強(qiáng)的關(guān)聯(lián)性,所以公司規(guī)定兩者都中標(biāo)才能簽合同,否則都不簽合同,而三種零部件是否中標(biāo)互不影響.已知該汽車零部件加工廠中標(biāo)種零部件的概率為,只中標(biāo)種零部件的概率為,、兩種零部件簽訂合同的概率為.
(Ⅰ)求該汽車零部件加工廠種汽車零部件中標(biāo)的概率;
(Ⅱ)設(shè)該汽車零部件加工廠簽訂合同的汽車零部件種數(shù)為,求的分布列與期望.
20. 某醫(yī)藥公司研制了甲、乙兩種抗“ABL病毒”的藥物,用若干試驗(yàn)組進(jìn)行臨床對比試驗(yàn).每個(gè)試驗(yàn)組由4位該病毒的感染者組成,其中2人服用甲種藥物,另2人服用乙種藥物,然后觀察療效.若在一個(gè)試驗(yàn)組中,服用甲種藥物有效的人數(shù)比服用乙種藥物有效的人數(shù)多,就稱該試驗(yàn)組為甲類組.設(shè)每為感染者服用甲種藥物有效的概率為,服用乙種藥物有效的概率為.
(Ⅰ)求一個(gè)試驗(yàn)組為甲類組的概率;
(Ⅱ)觀察三個(gè)試驗(yàn)組,用X表示這三個(gè)試驗(yàn)組中甲類組的個(gè)數(shù),求X的分布列和數(shù)學(xué)期望.