2020年高考數(shù)學(xué)前三大題突破訓(xùn)練(23-28)含詳細解答
《2020年高考數(shù)學(xué)前三大題突破訓(xùn)練(23-28)含詳細解答》由會員分享,可在線閱讀,更多相關(guān)《2020年高考數(shù)學(xué)前三大題突破訓(xùn)練(23-28)含詳細解答(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2020年高考數(shù)學(xué)前三大題突破訓(xùn)練(23-28) (二十三) 17.(本小題滿分12分) 已知二次函數(shù)對任意,都有成立, 設(shè)向量(sinx,2),(2sinx,),(cos2x,1),(1,2), 當(dāng)[0,]時,求不等式f()>f()的解集. 18.(本小題滿分12分) 甲、乙隊進行籃球總決賽,比賽規(guī)則為:七場四勝制,即甲或乙隊,誰先累計獲勝四場比賽時,該隊就是總決賽的冠軍,若在每場比賽中,甲隊獲勝的概率均為0.6,每場比賽必須分出勝負,且每場比賽的勝或負不影響下一場比賽的勝或負. (1)求甲隊打完第五場比賽就獲得冠軍的概率; (2)求甲隊獲得
2、冠軍的概率. 19.(本小題滿分12分) 如圖,PA⊥平面ABCD,四邊形ABCD是矩形, E、F分別是AB、PD的中點. (1)求證:AF∥平面PCE; (2)若二面角P-CD-B為45°,AD=2,CD=3, 求點F到平面PCE的距離. (二十四) 17.(本題滿分(12分) 已知函數(shù)是定義在上的奇函數(shù),在上 (Ⅰ)求函數(shù)的解析式;并判斷在上的單調(diào)性(不要求證明) (Ⅱ)解不等式. 18.(本題滿分14分) 某“帆板”集訓(xùn)隊在一海濱區(qū)域進行集訓(xùn),該海濱區(qū)域的海浪高度(米)隨著時間而周期性變化,每天各時刻的浪高數(shù)據(jù)的平均值如下表:
3、 0 3 6 9 12 15 18 21 24 1.0 1.4 1.0 0.6 1.0 1.4 0.9 0.5 1.0 (Ⅰ)試畫出散點圖; (Ⅱ)觀察散點圖,從中選擇一個合適的函數(shù)模型,并求出該擬合模型的解析式; (Ⅲ)如果確定在白天7時~19時當(dāng)浪高不低于0。8米時才進行訓(xùn)練,試安排恰當(dāng)?shù)挠?xùn)練時間。 19.(本題滿分14分) 設(shè)二次函數(shù),已知不論為何實數(shù)恒有 和。 (Ⅰ)求的值; (Ⅱ)求證:; (Ⅲ)若函數(shù)的最大值為8,求的值。 (二十五) 16.(本題滿分12分) 在中,分別是三個內(nèi)角的對邊.若,,求的
4、面積. 17.(本題滿分12分) 有紅藍兩粒質(zhì)地均勻的正方體形狀骰子,紅色骰子有兩個面是8,四個面是2,藍色骰子有三個面是7,三個面是1,兩人各取一只骰子分別隨機擲一次,所得點數(shù)較大者獲勝. (1)分別求出兩只骰子投擲所得點數(shù)的分布列及期望; (2)求投擲藍色骰子者獲勝的概率是多少? 18.(本題滿分14分) 如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=kPA,點O、D分別是AC、PC的中點,OP⊥底面ABC. (Ⅰ)求證:OD∥平面PAB; (Ⅱ)當(dāng)k=時,求直線PA與平面PBC所成角的大??; (Ⅲ) 當(dāng)k取何值時,O
5、在平面PBC內(nèi)的射影恰好為△PBC的重心? (二十六) 16、(文科只做第一小題,本小題滿分12分) 已知甲、乙、丙三人獨自射擊命中目標的概率分別是、、。 (1)、若三人同時對同一目標進行射擊,求目標被擊中的概率; (2)、若由甲、乙、丙三人輪流對目標進行射擊(每人只有一發(fā)子彈),目標被擊中則停止射擊。請問三人的射擊順序如何編排才最節(jié)省子彈?試用數(shù)學(xué)方法說明你的結(jié)論。 17、(本小題滿分14分)如圖,直三棱柱中,∠ACB=90°,AC=BC=CC’=2 (1)、求證:A’C⊥平面AB’C’; (
6、2)、求三棱錐B-AB’C’的體積; (3)、求異面直線A’C與BC’所成的角。 18.(本小題14分) 已知數(shù)列的前項和為,的前項和為,且。(1)、求數(shù)列、的通項公式; (2)、若對于數(shù)列有,,請求出數(shù)列的前n項和 (二十七) 17、(本小題滿分12分) 在△中,,,是三角形的三內(nèi)角,a,b,是三內(nèi)角對應(yīng)的三邊長, 已知 (Ⅰ)求角的大??; (Ⅱ)若,求角的大小. 18、(本小題滿分14分) P A B C D 如圖,四棱錐P-ABCD是底面邊長為1的正方形, PD⊥BC,PD=1,PC=.
7、 (Ⅰ)求證:PD⊥面ABCD; (Ⅱ)求二面角A-PB-D的大小. 19、(本小題滿分14分第一、第二小問滿分各7分) 已知向量滿足,且,令, (Ⅰ)求(用表示); (Ⅱ)當(dāng)時,對任意的恒成立,求實數(shù)的取值范圍。 (二十八) 16.(本小題滿分14分) 已知為銳角,且. (Ⅰ)求的值;(Ⅱ)求的值. 17.(本小題滿分14分)如圖, 在矩形中, , 分別為線段的中點, ⊥平面. (Ⅰ)求證: ∥平面; (Ⅱ)求證:平面⊥平面; (Ⅲ) 若, 求三棱錐的體積. 18
8、.(本小題滿分 12分)已知數(shù)列為等差數(shù)列,且,. (Ⅰ) 求數(shù)列的通項公式;(Ⅱ) 令,求證:數(shù)列是等比數(shù)列. 參考答案 (二十三) 【解題思路】:設(shè)f(x)的二次項系數(shù)為m,其圖象上兩點為(1-x,)、B(1+x,)因為,,所以,由x的任意性得f(x)的圖象關(guān)于直線x=1對稱, ………………………………………………………………(2分) ∵ ,,, ,,,………………………………(4分) ∴ 當(dāng)時,∵f(x)在x≥1內(nèi)是增函數(shù), ,. ∵ , ∴?。?8分) 當(dāng)時,∵f(x)在x≥1內(nèi)是減函數(shù). 同理可得或,.
9、………………………………………(11分) 綜上:的解集是當(dāng)時,為 當(dāng)時,為,或.…………………………(12分) 【試題評析】:本小題主要考查最簡單三角不等式的解法等基本知識,涉及到分類討論、二次函數(shù)的對稱性、向量的數(shù)量積、函數(shù)的單調(diào)性等基本知識和方法的綜合運用,考查運算能力及邏輯思維能力。 18.(理)【解題思路】:(1)設(shè)甲隊在第五場比賽后獲得冠軍為事件M,則第五場比賽甲隊獲勝,前四場比賽甲隊獲勝三場, 依題意得.……………………………(6分) (2)設(shè)甲隊獲得冠軍為事件E,則E包含第四、第五、第六、第七場獲得冠軍四種情況,且它們彼此互斥. ∴?。? ………
10、………………………………………………………(12分) 【試題評析】:考查互斥事件有一個發(fā)生的概率,相互獨立事件同時發(fā)生的概率,n次獨立重復(fù)實驗恰好k次發(fā)生的概率。考查邏輯思維能力,要求考生具有較強的辨別雷同信息的能力。 19.【解題思路】:解法一:(1)取PC中點M,連結(jié)ME、MF,則MF∥CD,MF=CD,又AE∥CD,AE=CD,∴AE∥MF,且AE=MF,∴四邊形AFME是平行四邊形,∴AF∥EM,∵AF平面PCE,∴AF∥平面PCE. …………………………………(4分) (2)∵PA⊥平面ABCD,CD⊥AD. ∴CD⊥PD,∴∠PDA是二面角P-CD-B的平面角,即
11、∠PDA=45°, ………………………………………………………………(6分) ∴△PAD是等腰直角三角形,∴AF⊥PD,又AF⊥CD,∴AF⊥平面PCD,而EM∥AF,∴EM⊥平面PCD. 又EM平面PEC,∴面PEC⊥面PCD. 在平面PCD內(nèi)過F作FH⊥PC于H,則FH就是點F到平面PCE的距離. …………………………………(10分) 由已知,PD=,PF=,PC=,△PFH∽△PCD,∴, ∴FH=. ………………………………………………………………(12分) 解法二:(1)取PC中點M,連結(jié)EM, =+=,∴AF∥EM,又EM平面PEC,AF平面PE
12、C,∴AF∥平面PEC. ………………………………………………(4分) (2)以A為坐標原點,分別以所在直線為x、y、z 軸建立坐標系. ∵PA⊥平面ABCD,CD⊥AD,∴CD⊥PD, ∴∠PDA是二面角P-CD-B的平面角,即∠PDA=45°. ……(6分) ∴A(0, 0, 0), P(0, 0, 2), D(0, 2, 0), F(0, 1, 1), E, C(3, 2, 0),設(shè)平面PCE的法向量為=(x, y, z),則⊥,⊥,而=(-,0,2), =(,2,0),∴-x+2z=0,且x+2y=0,解得y=-x,z=x. 取x=4 得=(4, -3, 3),…………
13、……………………………………………………(10分) 又=(0,1,-1), 故點F到平面PCE的距離為d=.…………(12分) 【試題評析】:本小題主要考查直線與平面的位置關(guān)系等基本知識,是否利用空間向量供考生選擇。考查空間想象能力、邏輯推理能力和運算能力 (二十四) 17. 解:(1) 設(shè),則 …………………1分 …………………2分 又是奇函數(shù),所以…………………3分 =……4分 ………………5分 是[-1,1]上增函數(shù)………………6分 (2)是[-1,1]上增函數(shù),由已知
14、得: …………7分 等價于 …………10分 解得:,所以…………12分 二次函數(shù)在上遞減………………………12分 故時, ……………………13分 ,…………………………14分 (二十五) 16.解: 由題意,得為銳角,, 3分 , 6分 由正弦定理得 , 9分 . 12分 17.(本題滿分12分) 有紅藍兩粒質(zhì)地
15、均勻的正方體形狀骰子,紅色骰子有兩個面是8,四個面是2,藍色骰子有三個面是7,三個面是1,兩人各取一只骰子分別隨機擲一次,所得點數(shù)較大者獲勝. (1)分別求出兩只骰子投擲所得點數(shù)的分布列及期望; (2)求投擲藍色骰子者獲勝的概率是多少? 17.解:(1)設(shè)紅色骰子投擲所得點數(shù)為,其分布如下: 8 2 P ………………2分 ;………………………………………………4分 設(shè)藍色骰子投擲所得點數(shù),其分布如下; 7 1 P ………………6分 ………………………………8分 (2)∵投擲骰子點數(shù)較大者獲勝,∴投擲藍色骰子者若獲勝,則投擲后藍
16、色骰子點數(shù)為7, 紅色骰子點數(shù)為2.∴投擲藍色骰子者獲勝概率是…………12分 18.(本題滿分14分) 如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=kPA,點O、D分別是AC、PC的中點,OP⊥底面ABC. (Ⅰ)求證:OD∥平面PAB; (Ⅱ)當(dāng)k=時,求直線PA與平面PBC所成角的大??; (Ⅲ) 當(dāng)k取何值時,O在平面PBC內(nèi)的射影恰好為△PBC的重心? 解:解法一 (Ⅰ)∵O、D分別為AC、PC的中點:∴OD∥PA,又PA平面PAB, ∴OD∥平面PAB.
17、 3分 (Ⅱ)∵AB⊥BC,OA=OC,∴OA=OC=OB,又∵OP⊥平面ABC,∴PA=PB=PC. 取BC中點E,連結(jié)PE,則BC⊥平面POE,作OF⊥PE于F,連結(jié)DF,則OF⊥平面PBC ∴∠ODF是OD與平面PBC所成的角. 又OD∥PA,∴PA與平面PBC所成角的大小等于∠ODF. 在Rt△ODF中,sin∠ODF=, ∴PA與平面PBC所成角為arcsin 4分 (Ⅲ)由(Ⅱ)知,OF⊥平面PBC,∴F是O在平面PBC內(nèi)的射影. ∵D是PC的中點,若F是△PBC的重心,則B、F、D
18、三點共線,直線OB在平面PBC內(nèi)的射影為直線BD,∵OB⊥PC.∴PC⊥BD,∴PB=BC,即k=1..反之,,當(dāng)k=1時,三棱錐O-PBC為正三棱錐,∴O在平面PBC內(nèi)的射影為△PBC的重心. 5分 解法二: ∵OP⊥平面ABC,OA=OC,AB=BC,∴OA⊥OB,OA⊥OP,OB⊥OP. 以O(shè)為原點,射線OP為非負x軸,建立空間坐標系O-xyz如圖),設(shè)AB=a,則A(a,0,0). B(0, a,0),C(-a,0,0).設(shè)OP=h,則P(0,0,h). (Ⅰ)∵D為PC的中點,∴又∥, ∴OD∥平面PAB.
19、 (Ⅱ)∵k=則PA=2a,∴h=∴可求得平面PBC的法向量 ∴cos. 設(shè)PA與平面PBC所成角為θ,剛sinθ=|cos()|=. ∴PA與平面PBC所成的角為arcsin. (Ⅲ)△PBC的重心G(),∴=(). ∵OG⊥平面PBC,∴又∴, ∴h=,∴PA=,即k=1,反之,當(dāng)k=1時,三棱錐O-PBC為正三棱錐. ∴O為平面PBC內(nèi)的射影為△PBC的重心. (二十六) 16、解:(1)設(shè)甲命中目標為事件A,乙命中目標為事件B,丙命中目標為事件C 三人同時對同一目標射擊,目標被擊中為事件D …… 2分 可知,三人同時對同一目標射擊,目標不被
20、擊中為事件 有 又由已知 …… 6分 ∴ 答:三人同時對同一目標進行射擊,目標被擊中的概率為 …… 8分 (2)甲、乙、丙由先而后進行射擊時最省子彈。 …… 10分 甲、乙、丙由先而后進行射擊時所用子彈的分布列為 ξ 1 2 3 P …… 11分 由此可求出此時所耗子彈數(shù)量的期望為: …… 13分 按其它順序編排進行射擊時,得出所耗子彈數(shù)量的期望值均高過此時, 因此甲、乙、丙由先而后進行射
21、擊時最省子彈。 …… 14分 17、 (可用常規(guī)方法,亦可建立坐標系用向量解決,方法多樣,答案過程略) (1)、證明略 (4分) (2)、(4分) (3)、異面直線A’C與BC’所成的角為60°(4分) 18、解:(1)由已知, …… 2分 …… 4分 由,得 ∴p= ∴ …… 6分 (2)由(1)得, …… 7分 2
22、… ① …② ……10分 ②-①得, == ……14分 (二十七) 17、(本小題滿分12分) 解:(Ⅰ)在△ABC中, ……………………………… 6分 (Ⅱ)由正弦定理,又,故 即: 故△ABC是以角C為直角的直角三角形 又………………………………………………12分 P A B C D O E 18.(本小題滿分14分) (Ⅰ)證明:, .……2分 又,……4分 ∴ PD⊥面ABCD………6分 (Ⅱ)解:連結(jié)BD,設(shè)BD
23、交AC于點O, 過O作OE⊥PB于點E,連結(jié)AE, ∵PD⊥面ABCD, ∴, 又∵AO⊥BD, ∴AO⊥面PDB. ∴AO⊥PB, ∵, ∴,從而, 故就是二面角A-PB-D的平面角.……………………10分 ∵ PD⊥面ABCD, ∴PD⊥BD, ∴在Rt△PDB中, , 又∵, ∴,………………12分 ∴ . 故二面角A-PB-D的大小為60°. …………………14分 (也可用向量解) 19、(本小題滿分14分) (Ⅰ)由題設(shè)得,對兩邊平方得 展開整理易得 ------------------------6分 (Ⅱ),當(dāng)且僅當(dāng)
24、=1時取得等號. 欲使對任意的恒成立,等價于 即在上恒成立,而在上為單調(diào)函數(shù)或常函數(shù), 所以 解得 故實數(shù)的取值范圍為 ---------------------------------14分 (二十八) .w.w.k.s.5.u.c.o.m16.解: 為銳角,且 ……3分 (Ⅰ) …….6分 ………….7分 (Ⅱ)= ………. 10分 …………..14分 17.(本小題滿分14分) 證明: (Ⅰ) 在矩形ABCD中, ∵AP=PB, DQ=QC, ∴APCQ.
25、 ∴AQCP為平行四邊形. ∴CP∥AQ. …………3分 ∵CP平面CEP, AQ平面CEP, ∴AQ∥平面CEP. …………5分 (Ⅱ) ∵EP⊥平面ABCD, AQ平面ABCD, ∴AQ⊥EP. …………6分 ∵AB=2BC, P為AB中點, ∴AP=AD. 連PQ, ADQP為正方形. ∴AQ⊥DP. 又EP∩DP=P, …………8分 ∴AQ⊥平面DEP. …………9分 ∵AQ平面AEQ. ∴平面AEQ⊥平面DEP. …………10分 (Ⅲ)解:∵⊥平面 ∴EP為三棱錐的高 所以 ………14分 18.解:(Ⅰ)∵數(shù)列為等差數(shù)列,設(shè)公差為, 由,得, , ∴, . ……6分 (Ⅱ)∵ , ∴ , ∴數(shù)列是等比數(shù)列 . ……12分
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案