九年級數(shù)學(xué)下冊 第二十六章 反比例函數(shù) 26.2 實際問題與反比例函數(shù) 第1課時 實際問題中的反比例函數(shù) .ppt
《九年級數(shù)學(xué)下冊 第二十六章 反比例函數(shù) 26.2 實際問題與反比例函數(shù) 第1課時 實際問題中的反比例函數(shù) .ppt》由會員分享,可在線閱讀,更多相關(guān)《九年級數(shù)學(xué)下冊 第二十六章 反比例函數(shù) 26.2 實際問題與反比例函數(shù) 第1課時 實際問題中的反比例函數(shù) .ppt(25頁珍藏版)》請在裝配圖網(wǎng)上搜索。
26.2實際問題與反比例函數(shù),第1課時,九年級下冊,1.能夠通過分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型解決問題;,2.能夠根據(jù)實際問題確定自變量的取值范圍;,3.體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系,提高運用代數(shù)方法解決問題的能力.,1.三角形中,當(dāng)面積S一定時,高h與相應(yīng)的底邊長a關(guān)系__________________。2.矩形中,當(dāng)面積S一定時,長a與寬b關(guān)系__________________。3.長方體中當(dāng)體積V一定時,高h與底面積S的關(guān)系__________________。,,,,4.一個水池裝水12m3,如果從水管中每小時流出xm3的水,經(jīng)過yh可以把水放完,那么y與x的函數(shù)關(guān)系式是__________________,自變量x的取值范圍是________________5.京沈高速公路全長658km,汽車沿京沈高速公路從沈陽駛往北京,則汽車行完全程所需時間t(h)與行駛的平均速度v(km/h)之間的函數(shù)關(guān)系式為__________________,,,,,問題:把體積為15cm3的面團做成拉面,你能寫出面條的總長度y(單位:cm)與面條粗細(橫截面積)S(單位:cm2)的函數(shù)關(guān)系式嗎?,你還能舉出我們在日常生活、生產(chǎn)或?qū)W習(xí)中具有反比例函數(shù)關(guān)系的量的實例嗎?,市煤氣公司要在地下修建一個容積為104m3的圓柱形煤氣儲存室.(1)儲存室的底面積S(單位:m2)與其深度d(單位:m)有怎樣的函數(shù)關(guān)系?,解:根據(jù)圓柱體的體積公式,得Sd=104,,∴S關(guān)于d的函數(shù)解析式為,(2)公司決定把儲存室的底面積S定為500m2,施工隊施工時應(yīng)該向下掘進多深?,解得d=20.如果把儲存室的底面積定為500m,施工時應(yīng)向地下掘進20m深.,解:把S=500代入,得,(3)當(dāng)施工隊按(2)中的計劃掘進到地下15m時,公司臨時改變計劃,把儲存室的深度改為15m.相應(yīng)地,儲存室的底面積應(yīng)改為多少(結(jié)果保留小數(shù)點后兩位)?,解得S≈666.67.,當(dāng)儲存室的深度為15m時,底面積應(yīng)改為666.67m.,解:根據(jù)題意,把d=15代入,得,例1碼頭工人每天往一艘輪船上裝載30噸貨物,裝載完畢恰好用了8天時間.(1)輪船到達目的地后開始卸貨,平均卸貨速度v(單位:噸/天)與卸貨天數(shù)t之間有怎樣的函數(shù)關(guān)系?,解:設(shè)輪船上的貨物總量為k噸,根據(jù)已知條件得k=308=240,所以v關(guān)于t的函數(shù)解析式為,(2)由于遇到緊急情況,要求船上的貨物不超過5天卸載完畢,那么平均每天至少要卸載多少噸?,從結(jié)果可以看出,如果全部貨物恰好用5天卸載完,則平均每天卸載48噸.而觀察求得的反比例函數(shù)的解析式可知,t越小,v越大.這樣若貨物不超過5天卸載完,則平均每天至少要卸載48噸.,解:把t=5代入,得,例2一司機駕駛汽車從甲地去乙地,他以80千米/時的平均速度用6小時達到乙地.(1)甲、乙兩地相距多少千米?,解:806=480(千米)答:甲、乙兩地相距480千米.,(2)當(dāng)他按原路勻速返回時,汽車的速度v與時間t有怎樣的函數(shù)關(guān)系?,解:由題意得vt=480,,整理得(t>0).,例3某鄉(xiāng)鎮(zhèn)要在生活垃圾存放區(qū)建一個老年活動中心,這樣必須把1200立方米的生活垃圾運走.(1)假如每天能運x立方米,所需時間為y天,寫出y與x之間的函數(shù)關(guān)系式;,解:,(2)若每輛拖拉機一天能運12立方米,則5輛這樣的拖拉機要用多少天才能運完?,解:x=125=60,代入函數(shù)解析式得,答:若每輛拖拉機一天能運12立方米,則5輛這樣的拖拉機要用20天才能運完.,(3)在(2)的情況下,運了8天后,剩下的任務(wù)要在不超過6天的時間內(nèi)完成,那么至少需要增加多少輛這樣的拖拉機才能按時完成任務(wù)?,解:運了8天后剩余的垃圾有1200-860=720(立方米),剩下的任務(wù)要在不超過6天的時間完成,則每天至少運7206=120(立方米),所以需要的拖拉機數(shù)量是:12012=10(輛),即至少需要增加拖拉機10-5=5(輛).,1.矩形面積為6,它的長y與寬x之間的函數(shù)關(guān)系用圖象可表示為(),B,A.,x,y,x,y,x,y,x,y,,2.如圖,某玻璃器皿制造公司要制造一種容積為1升(1升=1立方分米)的圓錐形漏斗.(1)漏斗口的面積S(單位:dm2)與漏斗的深d(單位:dm)有怎樣的函數(shù)關(guān)系?,解:,(2)如果漏斗的深為10cm,那么漏斗口的面積為多少dm2?,解:10cm=1dm,把d=1代入解析式,得S=3.所以漏斗口的面積為3dm2.,,1.面積為2的直角三角形一直角邊為x,另一直角邊長為y,則y與x的變化規(guī)律用圖象可大致表示為(),C,2.體積為20cm3的面團做成拉面,面條的總長度y(單位:cm)與面條粗細(橫截面積)S(單位:cm2)的函數(shù)關(guān)系為,若要使拉出來的面條粗1mm2,則面條的總長度是cm.,2000,3.A、B兩城市相距720千米,一列火車從A城去B城,若到達目的地后,按原路勻速返回,并要求在3小時內(nèi)回到A城,則返回的速度不能低于____________.,,,,240千米/時,4.學(xué)校鍋爐旁建有一個儲煤庫,開學(xué)時購進一批煤,現(xiàn)在知道:按每天用煤0.6噸計算,一學(xué)期(按150天計算)剛好用完.若每天的耗煤量為x噸,那么這批煤能維持y天.(1)則y與x之間有怎樣的函數(shù)關(guān)系?,解:煤的總量為:0.6150=90(噸),,根據(jù)題意有,(x>0).,(2)若每天節(jié)約0.1噸,則這批煤能維持多少天?,解:∵每天節(jié)約0.1噸煤,∴每天的用煤量為0.6-0.1=0.5(噸),∴這批煤能維持180天.,5.在某村河治理工程施工過程中,某工程隊接受一項開挖水渠的工程,所需天數(shù)y(天)與每天完成的工程量x(m/天)的函數(shù)關(guān)系圖象如圖所示.(1)請根據(jù)題意,求y與x之間的函數(shù)表達式;,解:,(2)若該工程隊有2臺挖掘機,每臺挖掘機每天能夠開挖水渠15m,問該工程隊需用多少天才能完成此項任務(wù)?,解:由圖象可知共需開挖水渠2450=1200(m),2臺挖掘機需要1200(215)=40(天).,(3)如果為了防汛工作的緊急需要,必須在一個月內(nèi)(按30天計算)完成任務(wù),那么每天至少要完成多少m?,解:120030=40(m),故每天至少要完成40m.,實際問題中的反比例函數(shù),分析實際情境→建立函數(shù)模型→明確數(shù)學(xué)問題,實際問題中的兩個變量往往都只能取非負值;作實際問題中的函數(shù)圖像時,橫、縱坐標的單位長度不一定相同.,,書面作業(yè):課后練習(xí)1,2兩小題。,再見,- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 九年級數(shù)學(xué)下冊 第二十六章 反比例函數(shù) 26.2 實際問題與反比例函數(shù) 第1課時 實際問題中的反比例函數(shù) 九年級 數(shù)學(xué) 下冊 第二 十六 反比例 函數(shù) 實際問題 課時 中的
鏈接地址:http://weibangfood.com.cn/p-13193904.html