2019-2020年高中數(shù)學(xué) 第1章 統(tǒng)計(jì) 5 用樣本估計(jì)總體教學(xué)案 北師大版必修3.doc
《2019-2020年高中數(shù)學(xué) 第1章 統(tǒng)計(jì) 5 用樣本估計(jì)總體教學(xué)案 北師大版必修3.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 第1章 統(tǒng)計(jì) 5 用樣本估計(jì)總體教學(xué)案 北師大版必修3.doc(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 第1章 統(tǒng)計(jì) 5 用樣本估計(jì)總體教學(xué)案 北師大版必修3 1.眾數(shù)、中位數(shù)、平均數(shù) (1)眾數(shù)的定義: 一組數(shù)據(jù)中重復(fù)出現(xiàn)次數(shù)最多的數(shù)稱為這組數(shù)的眾數(shù),一組數(shù)據(jù)的眾數(shù)可以是一個(gè),也可以是多個(gè). (2)中位數(shù)的定義及求法: 把一組數(shù)據(jù)按從小到大的順序排列,把處于最中間位置的那個(gè)數(shù)(或中間兩數(shù)的平均數(shù))稱為這組數(shù)據(jù)的中位數(shù). (3)平均數(shù): ①平均數(shù)的定義: 如果有n個(gè)數(shù)x1、x2、…、xn,那么=,叫作這n個(gè)數(shù)的平均數(shù). ②平均數(shù)的分類: 總體平均數(shù):總體中所有個(gè)體的平均數(shù)叫總體平均數(shù). 樣本平均數(shù):樣本中所有個(gè)體的平均數(shù)叫樣本平均數(shù). 2.標(biāo)準(zhǔn)差、方差 (1)標(biāo)準(zhǔn)差的求法: 標(biāo)準(zhǔn)差是樣本數(shù)據(jù)到平均數(shù)的一種平均距離,一般用s表示. s=. (2)方差的求法: 標(biāo)準(zhǔn)差的平方s2叫作方差. s2=[(x1-)2+(x2-)2+…+(xn-)2]. 其中,xn是樣本數(shù)據(jù),n是樣本容量,是樣本均值. (3)方差的簡(jiǎn)化計(jì)算公式: s2=[(x+x+…+x)-n2] =(x+x+…+x)-2. 3.極差 一組數(shù)據(jù)的最大值與最小值的差稱為這組數(shù)據(jù)的極差. 4.?dāng)?shù)字特征的意義 平均數(shù)、中位數(shù)和眾數(shù)刻畫(huà)了一組數(shù)據(jù)的集中趨勢(shì),極差、方差刻畫(huà)了一組數(shù)據(jù)的離散程度. [問(wèn)題思考] 1.一組數(shù)據(jù)的眾數(shù)一定存在嗎?若存在,眾數(shù)是唯一的嗎? 提示:不一定.若一組數(shù)據(jù)中,每個(gè)數(shù)據(jù)出現(xiàn)的次數(shù)一樣多,則認(rèn)為這組數(shù)據(jù)沒(méi)有眾數(shù);不是,可以是一個(gè),也可以是多個(gè). 2.如何確定一組數(shù)據(jù)的中位數(shù)? 提示:(1)當(dāng)數(shù)據(jù)個(gè)數(shù)為奇數(shù)時(shí),中位數(shù)是按從小到大順序排列的中間位置的那個(gè)數(shù). (2)當(dāng)數(shù)據(jù)個(gè)數(shù)為偶數(shù)時(shí),中位數(shù)為排列在最中間的兩個(gè)數(shù)的平均值. 講一講 1.據(jù)報(bào)道,某公司的33名職工的月工資(單位:元)如下: 職務(wù) 董事長(zhǎng) 副董事長(zhǎng) 董事 總經(jīng)理 經(jīng)理 管理員 職員 人數(shù) 1 1 2 1 5 3 20 工資 5 500 5 000 3 500 3 000 2 500 2 000 1 500 (1)求該公司職工月工資的平均數(shù)、中位數(shù)、眾數(shù). (2)假設(shè)副董事長(zhǎng)的工資從5 000元提升到20 000元,董事長(zhǎng)的工資從5 500元提升到30 000元,那么新的平均數(shù)、中位數(shù)、眾數(shù)又是什么?(精確到元) (3)你認(rèn)為哪個(gè)統(tǒng)計(jì)量更能反映這個(gè)公司員工的工資水平,結(jié)合此問(wèn)題談一談你的看法. [嘗試解答] (1)平均數(shù)是=1 500+ ≈1 500+591=2 091(元). 中位數(shù)是1 500元,眾數(shù)是1 500元. (2)新的平均數(shù)是′=1500+ ≈1 500+1 788=3 288(元). 中位數(shù)是1 500元,眾數(shù)是1 500元. (3)在這個(gè)問(wèn)題中,中位數(shù)或眾數(shù)均能反映該公司員工的工資水平,因?yàn)楣局猩贁?shù)人的工資額與大多數(shù)人的工資額差別較大,這樣導(dǎo)致平均數(shù)與中位數(shù)偏差較大,所以平均數(shù)不能反映這個(gè)公司員工的工資水平. 1.眾數(shù)、中位數(shù)與平均數(shù)都是描述一組數(shù)據(jù)集中趨勢(shì)的量,平均數(shù)是最重要的量. 2.眾數(shù)考查各個(gè)數(shù)據(jù)出現(xiàn)的頻率,大小只與這組數(shù)據(jù)中的部分?jǐn)?shù)據(jù)有關(guān),當(dāng)一組數(shù)據(jù)中有不少數(shù)據(jù)多次重復(fù)出現(xiàn)時(shí),其眾數(shù)往往更能反映問(wèn)題. 3.中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動(dòng)對(duì)中位數(shù)沒(méi)有影響,中位數(shù)可能在所給的數(shù)據(jù)中,也可能不在所給的數(shù)據(jù)中.當(dāng)一組數(shù)據(jù)中的個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),可用中位數(shù)描述它的某種集中趨勢(shì). 練一練 1.某公司銷售部有銷售人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計(jì)了這15人某月的銷售量如下: 銷售量(件) 1 800 510 250 210 150 120 人數(shù) 1 1 3 5 3 2 (1)求這15位銷售人員該月銷售量的平均數(shù)、中位數(shù)及眾數(shù); (2)假設(shè)銷售部負(fù)責(zé)人把月銷售額定為320件,你認(rèn)為是否合理,為什么?如不合理,請(qǐng)你制定一個(gè)較為合理的銷售定額. 解:(1)平均數(shù)為(1 8001+5101+2503+2105+1503+1202)=320(件),中位數(shù)為210件,眾數(shù)為210件. (2) 不合理,因?yàn)?5人中有13人的銷售量未達(dá)到320件,也就是說(shuō),雖然320是這一組數(shù)據(jù)的平均數(shù),但它卻不能反映全體銷售人員的銷售水平.銷售額定為210件更合理些,這是由于210既是中位數(shù),又是眾數(shù),是大部分人都能達(dá)到的定額. 講一講 2.甲、乙兩機(jī)床同時(shí)加工直徑為100 cm的零件,為了檢驗(yàn)質(zhì)量,各從中抽取6件進(jìn)行測(cè)量,分別記錄數(shù)據(jù)為: 甲:99 100 98 100 100 103 乙:99 100 102 99 100 100 (1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù)及方差; (2)根據(jù)計(jì)算結(jié)果判斷哪臺(tái)機(jī)床加工零件的質(zhì)量更穩(wěn)定. [嘗試解答] (1)甲=(99+100+98+100+100+103)=100, 乙=(99+100+102+99+100+100)=100, s=[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=, s=[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1. (2)兩臺(tái)機(jī)床所加工零件的直徑的平均數(shù)相同,又s>s,所以乙機(jī)床加工零件的質(zhì)量更穩(wěn)定. 在實(shí)際問(wèn)題中,僅靠平均數(shù)不能完全反映問(wèn)題,還要研究方差,方差描述了數(shù)據(jù)相對(duì)平均數(shù)的離散程度,在平均數(shù)相同的情況下,方差越大,離散程度越大,數(shù)據(jù)波動(dòng)性越大,穩(wěn)定性就越差;方差越小,數(shù)據(jù)越集中,質(zhì)量越穩(wěn)定. 練一練 2.對(duì)劃艇運(yùn)動(dòng)員甲、乙兩人在相同的條件下進(jìn)行了6次測(cè)試,測(cè)得他們的最大速度(單位:m/s)的數(shù)據(jù)如下: 甲:27 38 30 37 35 31 乙:33 29 38 34 28 36 根據(jù)以上數(shù)據(jù),試估計(jì)兩人最大速度的平均數(shù)和標(biāo)準(zhǔn)差,并判斷他們誰(shuí)更優(yōu)秀. 解:甲=(27+38+30+37+35+31)==33, s=[(27-33)2+(38-33)2+(30-33)2+(37-33)2+(35-33)2+(31-33)2]=, s甲=≈3.96, 乙=(33+29+38+34+28+36)==33, s=[(33-33)2+(29-33)2+(38-33)2+(34-33)2+(28-33)2+(36-33)2]=, s乙=≈3.56. 由上知,甲、乙兩人最大速度的平均數(shù)均為33 m/s,甲的標(biāo)準(zhǔn)差為3.96 m/s,乙的標(biāo)準(zhǔn)差為3.56 m/s,說(shuō)明甲、乙兩人的最大速度的平均值相同,但乙的成績(jī)比甲的成績(jī)更穩(wěn)定,故乙比甲更優(yōu)秀. 講一講 3.在一次科技知識(shí)競(jìng)賽中,兩組學(xué)生的成績(jī)?nèi)缦卤恚? 分?jǐn)?shù) 50 60 70 80 90 100 人數(shù) 甲組 2 5 10 13 14 6 乙組 4 4 16 2 12 12 已經(jīng)算得兩個(gè)組的平均分都是80分.請(qǐng)根據(jù)你所學(xué)過(guò)的統(tǒng)計(jì)知識(shí),進(jìn)一步判斷這兩個(gè)組在這次競(jìng)賽中的成績(jī)誰(shuí)優(yōu)誰(shuí)劣,并說(shuō)明理由. [嘗試解答] (1)甲組成績(jī)的眾數(shù)為90分,乙組成績(jī)的眾數(shù)為70分,從成績(jī)的眾數(shù)比較看,甲組成績(jī)好些. (2)甲=(502+605+7010+8013+9014+1006) =4 000=80(分), 乙=(504+604+7016+802+9012+10012)=4 000=80(分). s=[2(50-80)2+5(60-80)2+10(70-80)2+13(80-80)2+14(90-80)2+6(100-80)2]=172, s=[4(50-80)2+4(60-80)2+16(70-80)2+2(80-80)2+12(90-80)2+12(100-80)2]=256. ∵s- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 第1章 統(tǒng)計(jì) 用樣本估計(jì)總體教學(xué)案 北師大版必修3 2019 2020 年高 數(shù)學(xué) 樣本 估計(jì) 總體 教學(xué) 北師大 必修
鏈接地址:http://weibangfood.com.cn/p-2596900.html