歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第30講 數(shù)列求和及數(shù)列實(shí)際問題教案 新人教版.doc

  • 資源ID:2738238       資源大小:241KB        全文頁數(shù):10頁
  • 資源格式: DOC        下載積分:9.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 微信支付   
驗(yàn)證碼:   換一換

 
賬號:
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第30講 數(shù)列求和及數(shù)列實(shí)際問題教案 新人教版.doc

2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第30講 數(shù)列求和及數(shù)列實(shí)際問題教案 新人教版 一.課標(biāo)要求: 1.探索并掌握一些基本的數(shù)列求前n項(xiàng)和的方法; 2.能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的數(shù)列的通項(xiàng)和遞推關(guān)系,并能用有關(guān)等差、等比數(shù)列知識解決相應(yīng)的實(shí)際問題。 二.命題走向 數(shù)列求和和數(shù)列綜合及實(shí)際問題在高考中占有重要的地位,一般情況下都是出一道解答題,解答題大多以數(shù)列為工具,綜合運(yùn)用函數(shù)、方程、不等式等知識,通過運(yùn)用逆推思想、函數(shù)與方程、歸納與猜想、等價轉(zhuǎn)化、分類討論等各種數(shù)學(xué)思想方法,這些題目都考察考生靈活運(yùn)用數(shù)學(xué)知識分析問題和解決問題的能力,它們都屬于中、高檔題目。 有關(guān)命題趨勢: 1.?dāng)?shù)列是一種特殊的函數(shù),而不等式則是深刻認(rèn)識函數(shù)和數(shù)列的有效工具,三者的綜合題是對基礎(chǔ)和能力的雙重檢驗(yàn),在三者交匯處設(shè)計試題,特別是代數(shù)推理題是高考的重點(diǎn); 2.?dāng)?shù)列推理題是將繼續(xù)成為數(shù)列命題的一個亮點(diǎn),這是由于此類題目能突出考察學(xué)生的邏輯思維能力,能區(qū)分學(xué)生思維的嚴(yán)謹(jǐn)性、靈敏程度、靈活程度; 3.?dāng)?shù)列與新的章節(jié)知識結(jié)合的特點(diǎn)有可能加強(qiáng),如與解析幾何的結(jié)合等; 4.有關(guān)數(shù)列的應(yīng)用問題也一直備受關(guān)注。 預(yù)測xx年高考對本將的考察為: 1.可能為一道考察關(guān)于數(shù)列的推導(dǎo)能力或解決生產(chǎn)、生活中的實(shí)際問題的解答題; 2.也可能為一道知識交匯題是數(shù)列與函數(shù)、不等式、解析幾何、應(yīng)用問題上等聯(lián)系的綜合題,以及數(shù)列、數(shù)學(xué)歸納法等有機(jī)結(jié)合。 三.要點(diǎn)精講 1.?dāng)?shù)列求通項(xiàng)與和 (1)數(shù)列前n項(xiàng)和Sn與通項(xiàng)an的關(guān)系式:an= 。 (2)求通項(xiàng)常用方法 ①作新數(shù)列法。作等差數(shù)列與等比數(shù)列; ②累差疊加法。最基本的形式是:an=(an-an-1)+(an-1+an-2)+…+(a2-a1)+a1; ③歸納、猜想法。 (3)數(shù)列前n項(xiàng)和 ①重要公式:1+2+…+n=n(n+1); 12+22+…+n2=n(n+1)(2n+1); 13+23+…+n3=(1+2+…+n)2=n2(n+1)2; ②等差數(shù)列中,Sm+n=Sm+Sn+mnd; ③等比數(shù)列中,Sm+n=Sn+qnSm=Sm+qmSn; ④裂項(xiàng)求和 將數(shù)列的通項(xiàng)分成兩個式子的代數(shù)和,即an=f(n+1)-f(n),然后累加抵消掉中間的許多項(xiàng),這種先裂后消的求和法叫裂項(xiàng)求和法。用裂項(xiàng)法求和,需要掌握一些常見的裂項(xiàng),如:、=-、nn!=(n+1)!-n!、Cn-1r-1=Cnr-Cn-1r、=-等。 ⑤錯項(xiàng)相消法 對一個由等差數(shù)列及等比數(shù)列對應(yīng)項(xiàng)之積組成的數(shù)列的前n項(xiàng)和,常用錯項(xiàng)相消法。, 其中是等差數(shù)列, 是等比數(shù)列,記,則,… ⑥并項(xiàng)求和 把數(shù)列的某些項(xiàng)放在一起先求和,然后再求Sn。 數(shù)列求通項(xiàng)及和的方法多種多樣,要視具體情形選用合適方法。 ⑦通項(xiàng)分解法: 2.遞歸數(shù)列 數(shù)列的連續(xù)若干項(xiàng)滿足的等量關(guān)系an+k=f(an+k-1,an+k-2,…,an)稱為數(shù)列的遞歸關(guān)系。由遞歸關(guān)系及k個初始值可以確定的一個數(shù)列叫做遞歸數(shù)列。如由an+1=2an+1,及a1=1,確定的數(shù)列即為遞歸數(shù)列。 遞歸數(shù)列的通項(xiàng)的求法一般說來有以下幾種: (1)歸納、猜想、數(shù)學(xué)歸納法證明。 (2)迭代法。 (3)代換法。包括代數(shù)代換,對數(shù)代數(shù),三角代數(shù)。 (4)作新數(shù)列法。最常見的是作成等差數(shù)列或等比數(shù)列來解決問題。 四.典例解析 題型1:裂項(xiàng)求和 例1.已知數(shù)列為等差數(shù)列,且公差不為0,首項(xiàng)也不為0,求和:。 解析:首先考慮,則=。 點(diǎn)評:已知數(shù)列為等差數(shù)列,且公差不為0,首項(xiàng)也不為0,下列求和也可用裂項(xiàng)求和法。 例2.求。 解析:, 點(diǎn)評:裂項(xiàng)求和的關(guān)鍵是先將形式復(fù)雜的因式轉(zhuǎn)化的簡單一些。 題型2:錯位相減法 例3.設(shè)a為常數(shù),求數(shù)列a,2a2,3a3,…,nan,…的前n項(xiàng)和。 解析:①若a=0時,Sn=0; ②若a=1,則Sn=1+2+3+…+n=; ③若a≠1,a≠0時,Sn-aSn=a(1+a+…+an-1-nan), Sn=。 例4.已知,數(shù)列是首項(xiàng)為a,公比也為a的等比數(shù)列,令,求數(shù)列的前項(xiàng)和。 解析:, ①-②得:, 點(diǎn)評:設(shè)數(shù)列的等比數(shù)列,數(shù)列是等差數(shù)列,則數(shù)列的前項(xiàng)和求解,均可用錯位相減法。 題型3:倒序相加 例5.求。 解析:。 ① 又。 ② 所以。 點(diǎn)評:Sn表示從第一項(xiàng)依次到第n項(xiàng)的和,然后又將Sn表示成第n項(xiàng)依次反序到第一項(xiàng)的和,將所得兩式相加,由此得到Sn的一種求和方法。 例6.設(shè)數(shù)列是公差為,且首項(xiàng)為的等差數(shù)列, 求和: 解析:因?yàn)椋? , 。 點(diǎn)評:此類問題還可變換為探索題形:已知數(shù)列的前項(xiàng)和,是否存在等差數(shù)列使得對一切自然數(shù)n都成立。 題型4:其他方法 例7.求數(shù)列1,3+5,7+9+11,13+15+17+19,…前n項(xiàng)和。 解析:本題實(shí)質(zhì)是求一個奇數(shù)列的和。在該數(shù)列的前n項(xiàng)中共有個奇數(shù),故。 例8.求數(shù)列1,3+,32+,……,3n+的各項(xiàng)的和。 解析:其和為(1+3+……+3n)+(+……+)==(3n+1-3-n)。 題型5:數(shù)列綜合問題 例9.( xx年浙江卷)已知函數(shù)=x3+x2,數(shù)列 | xn | (xn > 0)的第一項(xiàng)x1=1,以后各項(xiàng)按如下方式取定:曲線y=在處的切線與經(jīng)過(0,0)和(xn,f(xn))兩點(diǎn)的直線平行(如圖)。 求證:當(dāng)n時:(I);(II)。 解析:(I)因?yàn)? 所以曲線在處的切線斜率 因?yàn)檫^和兩點(diǎn)的直線斜率是 所以. (II)因?yàn)楹瘮?shù)當(dāng)時單調(diào)遞增, 而 所以,即 因此 又因?yàn)? 令則 因?yàn)樗? 因此 故 點(diǎn)評:數(shù)列與解析幾何問題結(jié)合在一塊,數(shù)列的通項(xiàng)與線段的長度、點(diǎn)的坐標(biāo)建立起聯(lián)系。 例10.(xx年遼寧卷)已知,其中,設(shè),。 (I) 寫出;(II) 證明:對任意的,恒有。 解析:(I)由已知推得,從而有; (II) 證法1:當(dāng)時, 當(dāng)x>0時, ,所以在[0,1]上為增函數(shù)。 因函數(shù)為偶函數(shù)所以在[-1,0]上為減函數(shù), 所以對任意的, 因此結(jié)論成立。 證法2:當(dāng)時, 當(dāng)x>0時, ,所以在[0,1]上為增函數(shù)。 因函數(shù)為偶函數(shù)所以在[-1,0]上為減函數(shù) 所以對任意的 又因 所以 因此結(jié)論成立。 證法3:當(dāng)時, 當(dāng)x>0時, ,所以在[0,1]上為增函數(shù)。 因?yàn)楹瘮?shù)為偶函數(shù)所以在[-1,0]上為減函數(shù)。 所以對任意的 由 對上式兩邊求導(dǎo)得: 因此結(jié)論成立。 點(diǎn)評:數(shù)列與函數(shù)、導(dǎo)數(shù)結(jié)合在一塊,考察數(shù)列是一種特殊的函數(shù)的性質(zhì),其中還要用到數(shù)列的函數(shù)性質(zhì)來解釋問題。 題型6:數(shù)列實(shí)際應(yīng)用題 例11.某企業(yè)進(jìn)行技術(shù)改造,有兩種方案,甲方案:一次性貸款10萬元,第一年便可獲利1萬元,以后每年比前一年增加30%的利潤;乙方案:每年貸款1萬元,第一年可獲利1萬元,以后每年比前一年增加5千元;兩種方案的使用期都是10年,到期一次性歸還本息. 若銀行兩種形式的貸款都按年息5%的復(fù)利計算,試比較兩種方案中,哪種獲利更多? (?。? 解析:甲方案是等比數(shù)列,乙方案是等差數(shù)列, ①甲方案獲利:(萬元), 銀行貸款本息:(萬元), 故甲方案純利:(萬元), ②乙方案獲利: (萬元); 銀行本息和: (萬元) 故乙方案純利:(萬元); 綜上可知,甲方案更好。 點(diǎn)評:這是一道比較簡單的數(shù)列應(yīng)用問題,由于本息金與利潤是熟悉的概念,因此只建立通項(xiàng)公式并運(yùn)用所學(xué)過的公式求解。 例12.(xx湖南20)自然狀態(tài)下的魚類是一種可再生資源,為持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強(qiáng)度對魚群總量的影響. 用xn表示某魚群在第n年年初的總量,n∈N*,且x1>0.不考慮其它因素,設(shè)在第n年內(nèi)魚群的繁殖量及捕撈量都與xn成正比,死亡量與xn2成正比,這些比例系數(shù)依次為正常數(shù)a,b,c。 (Ⅰ)求xn+1與xn的關(guān)系式; (Ⅱ)猜測:當(dāng)且僅當(dāng)x1,a,b,c滿足什么條件時,每年年初魚群的總量保持不變?(不要求證明)   (Ⅱ)設(shè)a=2,b=1,為保證對任意x1∈(0,2),都有xn>0,n∈N*,則捕撈強(qiáng)度b的最大允許值是多少?證明你的結(jié)論。 解析:(I)從第n年初到第n+1年初,魚群的繁殖量為axn,被捕撈量為bxn,死亡量為 (II)若每年年初魚群總量保持不變,則xn恒等于x1, n∈N*, 從而由(*)式得: 因?yàn)閤1>0,所以a>b。 猜測:當(dāng)且僅當(dāng)a>b,且時,每年年初魚群的總量保持不變。 (Ⅲ)若b的值使得xn>0,n∈N* 由xn+1=xn(3-b-xn), n∈N*, 知0<xn<3-b, n∈N*, 特別地,有0<x1<3-b. 即0<b<3-x1。 而x1∈(0, 2),所以。 由此猜測b的最大允許值是1. 下證 當(dāng)x1∈(0, 2) ,b=1時,都有xn∈(0, 2), n∈N* ①當(dāng)n=1時,結(jié)論顯然成立。 ②假設(shè)當(dāng)n=k時結(jié)論成立,即xk∈(0, 2),則當(dāng)n=k+1時,xk+1=xk(2-xk)>0。 又因?yàn)閤k+1=xk(2-xk)=-(xk-1)2+1≤1<2, 所以xk+1∈(0, 2),故當(dāng)n=k+1時結(jié)論也成立. 由①、②可知,對于任意的n∈N*,都有xn∈(0,2)。 點(diǎn)評:數(shù)學(xué)歸納法在猜想證明數(shù)列通項(xiàng)和性質(zhì)上有很大的用處,同時該題又結(jié)合了實(shí)際應(yīng)用題解決問題。 題型7:課標(biāo)創(chuàng)新題 例13.(xx年北京卷)在數(shù)列中,若是正整數(shù),且,則稱為“絕對差數(shù)列”。 (Ⅰ)舉出一個前五項(xiàng)不為零的“絕對差數(shù)列”(只要求寫出前十項(xiàng)); (Ⅱ)證明:任何“絕對差數(shù)列”中總含有無窮多個為零的項(xiàng)。 解析:(Ⅰ)a1=3,a2=1,a3=2,a4=1,a5=1,a6=0,a7=1,a8=1,a9=0,a10=1.(答案不唯一); (Ⅱ)證明:根據(jù)定義,數(shù)列{an}必在有限項(xiàng)后出現(xiàn)零項(xiàng).證明如下: 假設(shè){an}中沒有零項(xiàng),由于an=|an-1-an-2|,所以對于任意的n,都有an≥1,從而 當(dāng)an-1 > an-2時,an = an-1 -an-2 ≤ an-1-1(n≥3); 當(dāng)an-1 < an-2時,an = an-2 - an-1 ≤ an-2-1(n≥3), 即an的值要么比an-1至少小1,要么比an-2至少小1. 令cn=n=1,2,3,……, 則0<cn≤cn-1-1(n=2,3,4……). 由于c1是確定的正整數(shù),這樣減少下去,必然存在某項(xiàng)c1<0這與cn>0(n=1,2,3……)矛盾.從而{an}必有零項(xiàng)。 若第一次出現(xiàn)的零項(xiàng)為第n項(xiàng),記an-1=A(A≠0),則自第n項(xiàng)開始,沒三個相鄰的項(xiàng)周期地取值O,A,A,即 所以絕對等差數(shù)列{an}中有無窮多個為零的項(xiàng)。 點(diǎn)評:通過設(shè)置“等差數(shù)列”這一概念加大學(xué)生對情景問題的閱讀、分析和解決問題的能力。 例14.(xx江蘇23)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,a2=6,a3=11,且其中A,B為常數(shù)。 (Ⅰ)求A與B的值; (Ⅱ)證明數(shù)列{an}為等差數(shù)列; (Ⅲ)證明不等式對任何正整數(shù)m、n都成立 分析:本題是一道數(shù)列綜合運(yùn)用題,第一問由a1、a2、a3求出s1、s2、s3代入關(guān)系式,即求出A、B;第二問利用公式,推導(dǎo)得證數(shù)列{an}為等差數(shù)列。 解答:(1)由已知,得S1=a1=1,S2=a1+a2=7,S3=a1+a2+a3=18。 由(5n-8)Sn+1-(5n+2)Sn=An+B知: 。 解得A=-20,B=-8。 (Ⅱ)方法1 由(1)得,(5n-8)Sn+1-(5n+2)Sn=-20n-8, ① 所以 (5n-3)Sn+2-(5n+7)Sn+1=-20n-28, ② ②-①,得, (5n-3)Sn+2-(10n-1)Sn+1+(5n+2)Sn=-20, ③ 所以 (5n+2)Sn+3-(10n+9)Sn+2+(5n+7)Sn+1=-20.④ ④-③,得 (5n+2)Sn+3-(15n+6)Sn+2+(15n+6)Sn+1-(5n+2)Sn=0. 因?yàn)? an+1=Sn+1-Sn 所以 (5n+2)an+3-(10n+4)an+2+(5n+2)an+1=0. 又因?yàn)? (5n+2), 所以 an+3-2an+2+an+1=0, 即 an+3-an+2=an+2-an+1, . 又 a3-a2=a2-a1=5, 所以數(shù)列為等差數(shù)列。 方法2. 由已知,S1=a1=1, 又(5n-8)Sn+1-(5n+2)Sn=-20n-8,且5n-8, 所以數(shù)列是惟一確定的。 設(shè)bn=5n-4,則數(shù)列為等差數(shù)列,前n項(xiàng)和Tn= 于是 (5n-8)Tn+1-(5n+2)Tn=(5n-8) 由惟一性得bn=a,即數(shù)列為等差數(shù)列。 (Ⅲ)由(Ⅱ)可知,an=1+5(n-1)=5n-4. 要證了 只要證 5amn>1+aman+2 因?yàn)? amn=5mn-4,aman=(5m-4)(5n-4)=25mn-20(m+n)+16, 故只要證 5(5mn-4)>1+25mn-20(m+n)+16+2 因?yàn)? =20m+20n-37, 所以命題得證。 點(diǎn)評:本題主要考查了等差數(shù)列的有關(guān)知識,不等式的證明方法,考查了分析推理、理性思維能力及相關(guān)運(yùn)算能力等。 五.思維總結(jié) 1.?dāng)?shù)列求和的常用方法 (1)公式法:適用于等差、等比數(shù)列或可轉(zhuǎn)化為等差、等比數(shù)列的數(shù)列; (2)裂項(xiàng)相消法:適用于其中{ }是各項(xiàng)不為0的等差數(shù)列,c為常數(shù);部分無理數(shù)列、含階乘的數(shù)列等; (3)錯位相減法:適用于其中{ }是等差數(shù)列,是各項(xiàng)不為0的等比數(shù)列。 (4)倒序相加法:類似于等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法. (5)分組求和法 (6)累加(乘)法等。 2.常用結(jié)論 (1) 1+2+3+...+n = (2)1+3+5+...+(2n-1) = (3) (4) (5) (6) 3.?dāng)?shù)學(xué)思想 (1)迭加累加(等差數(shù)列的通項(xiàng)公式的推導(dǎo)方法)若,則……; (2)迭乘累乘(等比數(shù)列的通項(xiàng)公式的推導(dǎo)方法)若,則……; (3)逆序相加(等差數(shù)列求和公式的推導(dǎo)方法); (4)錯位相減(等比數(shù)列求和公式的推導(dǎo)方法)。

注意事項(xiàng)

本文(2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第30講 數(shù)列求和及數(shù)列實(shí)際問題教案 新人教版.doc)為本站會員(tian****1990)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!