(新課標(biāo))天津市2019年高考數(shù)學(xué)二輪復(fù)習(xí) 題型練7 大題專項(xiàng)(五)解析幾何綜合問(wèn)題 理.doc
題型練7 大題專項(xiàng)(五)解析幾何綜合問(wèn)題
1.(2018天津,理19)設(shè)橢圓x2a2+y2b2=1(a>b>0)的左焦點(diǎn)為F,上頂點(diǎn)為B.已知橢圓的離心率為53,點(diǎn)A的坐標(biāo)為(b,0),且|FB||AB|=62.
(1)求橢圓的方程;
(2)設(shè)直線l:y=kx(k>0)與橢圓在第一象限的交點(diǎn)為P,且l與直線AB交于點(diǎn)Q.若|AQ||PQ|=524sin∠AOQ(O為原點(diǎn)),求k的值.
2.已知橢圓C:x2a2+y2b2=1(a>b>0)經(jīng)過(guò)點(diǎn)1,32,離心率為32.
(1)求橢圓C的方程;
(2)不垂直于坐標(biāo)軸的直線l與橢圓C交于A,B兩點(diǎn),以AB為直徑的圓過(guò)原點(diǎn),且線段AB的垂直平分線交y軸于點(diǎn)P0,-32,求直線l的方程.
3.設(shè)橢圓x2a2+y23=1(a>3)的右焦點(diǎn)為F,右頂點(diǎn)為A.已知1|OF|+1|OA|=3e|FA|,其中O為原點(diǎn),e為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)A的直線l與橢圓交于點(diǎn)B(B不在x軸上),垂直于l的直線與l交于點(diǎn)M,與y軸交于點(diǎn)H.若BF⊥HF,且∠MOA≤∠MAO,求直線l的斜率的取值范圍.
4.(2018北京,理19)已知拋物線C:y2=2px經(jīng)過(guò)點(diǎn)P(1,2).過(guò)點(diǎn)Q(0,1)的直線l與拋物線C有兩個(gè)不同的交點(diǎn)A,B,且直線PA交y軸于點(diǎn)M,直線PB交y軸于點(diǎn)N.
(1)求直線l的斜率的取值范圍;
(2)設(shè)O為原點(diǎn),QM=λQO,QN=μQO,求證:1λ+1μ為定值.
5.已知拋物線C:y2=2x的焦點(diǎn)為F,平行于x軸的兩條直線l1,l2分別交C于A,B兩點(diǎn),交C的準(zhǔn)線于P,Q兩點(diǎn).
(1)若F在線段AB上,R是PQ的中點(diǎn),證明AR∥FQ;
(2)若△PQF的面積是△ABF的面積的兩倍,求AB中點(diǎn)的軌跡方程.
6.
如圖,在平面直角坐標(biāo)系xOy中,橢圓E:x2a2+y2b2=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,離心率為12,兩準(zhǔn)線之間的距離為8.點(diǎn)P在橢圓E上,且位于第一象限,過(guò)點(diǎn)F1作直線PF1的垂線l1,過(guò)點(diǎn)F2作直線PF2的垂線l2.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若直線l1,l2的交點(diǎn)Q在橢圓E上,求點(diǎn)P的坐標(biāo).
題型練7 大題專項(xiàng)(五)
解析幾何綜合問(wèn)題
1.解 (1)設(shè)橢圓的焦距為2c,由已知有c2a2=59,
又由a2=b2+c2,可得2a=3b.
由已知可得,|FB|=a,|AB|=2b.
由|FB||AB|=62,可得ab=6,
從而a=3,b=2.
所以,橢圓的方程為x29+y24=1.
(2)設(shè)點(diǎn)P的坐標(biāo)為(x1,y1),點(diǎn)Q的坐標(biāo)為(x2,y2).
由已知有y1>y2>0,故|PQ|sin∠AOQ=y1-y2.
又因?yàn)閨AQ|=y2sin∠OAB,而∠OAB=π4,
故|AQ|=2y2.
由|AQ||PQ|=524sin∠AOQ,可得5y1=9y2.
由方程組y=kx,x29+y24=1,消去x,可得y1=6k9k2+4.易知直線AB的方程為x+y-2=0,由方程組y=kx,x+y-2=0,消去x,可得y2=2kk+1.
由5y1=9y2,可得5(k+1)=39k2+4,兩邊平方,整理得56k2-50k+11=0,解得k=12,或k=1128.
所以,k的值為12或1128.
2.解 (1)由題意得ca=32,1a2+34b2=1,a2=b2+c2,解得a=2,b=1.
故橢圓C的方程是x24+y2=1.
(2)設(shè)直線l的方程為y=kx+t,設(shè)A(x1,y1),B(x2,y2),
聯(lián)立y=kx+t,x24+y2=1,消去y,得(1+4k2)x2+8ktx+4t2-4=0,則有x1+x2=-8kt1+4k2,x1x2=4t2-41+4k2.
Δ>0?4k2+1>t2,
y1+y2=kx1+t+kx2+t=k(x1+x2)+2t=2t1+4k2,
y1y2=(kx1+t)(kx2+t)=k2x1x2+kt(x1+x2)+t2
=k24t2-41+4k2+kt-8kt1+4k2+t2=t2-4k21+4k2.
因?yàn)橐訟B為直徑的圓過(guò)坐標(biāo)原點(diǎn),所以O(shè)A⊥OB,x1x2+y1y2=0.
因?yàn)閤1x2+y1y2=4t2-41+4k2+t2-4k21+4k2=0,
所以5t2=4+4k2.因?yàn)棣?gt;0,所以4k2+1>t2,解得t<-32或t>32.
又設(shè)A,B的中點(diǎn)為D(m,n),則m=x1+x22=-4kt1+4k2,n=y1+y22=t1+4k2.
因?yàn)橹本€PD與直線l垂直,
所以kPD=-1k=-32-n-m,得t1+4k2=12.
由t1+4k2=12,5t2=4+4k2,解得t1=1,t2=-35.
當(dāng)t=-35時(shí),Δ>0不成立.當(dāng)t=1時(shí),k=12,
所以直線l的方程為y=12x+1或y=-12x+1.
3.解 (1)設(shè)F(c,0),由1|OF|+1|OA|=3e|FA|,
即1c+1a=3ca(a-c),可得a2-c2=3c2,
又a2-c2=b2=3,所以c2=1,因此a2=4.
所以,橢圓的方程為x24+y23=1.
(2)設(shè)直線l的斜率為k(k≠0),
則直線l的方程為y=k(x-2).
設(shè)B(xB,yB),由方程組x24+y23=1,y=k(x-2)
消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.
解得x=2,或x=8k2-64k2+3,
由題意得xB=8k2-64k2+3,從而yB=-12k4k2+3.
由(1)知,F(1,0),設(shè)H(0,yH),有FH=(-1,yH),BF=9-4k24k2+3,12k4k2+3.
由BF⊥HF,得BFFH=0,所以4k2-94k2+3+12kyH4k2+3=0,解得yH=9-4k212k.
因此直線MH的方程為y=-1kx+9-4k212k.
設(shè)M(xM,yM),由方程組y=k(x-2),y=-1kx+9-4k212k消去y,
解得xM=20k2+912(k2+1).
在△MAO中,∠MOA≤∠MAO?|MA|≤|MO|,
即(xM-2)2+yM2≤xM2+yM2,化簡(jiǎn)得xM≥1,即20k2+912(k2+1)≥1,解得k≤-64,或k≥64.
所以,直線l的斜率的取值范圍為-∞,-64∪64,+∞.
4.(1)解 因?yàn)閽佄锞€y2=2px經(jīng)過(guò)點(diǎn)P(1,2),
所以4=2p,解得p=2,
所以拋物線的方程為y2=4x.
由題意可知直線l的斜率存在且不為0,
設(shè)直線l的方程為y=kx+1(k≠0).
由y2=4x,y=kx+1,得k2x2+(2k-4)x+1=0.
依題意,Δ=(2k-4)2-4k21>0,
解得k<0或0<k<1.
又PA,PB與y軸相交,故直線l不過(guò)點(diǎn)(1,-2),從而k≠-3.
所以直線l斜率的取值范圍是(-∞,-3)∪(-3,0)∪(0,1).
(2)證明 設(shè)A(x1,y1),B(x2,y2).
由(1)知x1+x2=-2k-4k2,x1x2=1k2.
直線PA的方程為y-2=y1-2x1-1(x-1).
令x=0,得點(diǎn)M的縱坐標(biāo)為yM=-y1+2x1-1+2=-kx1+1x1-1+2.
同理得點(diǎn)N的縱坐標(biāo)為yN=-kx2+1x2-1+2.
由QM=λQO,QN=μQO,
得λ=1-yM,μ=1-yN.
所以1λ+1μ=11-yM+11-yN
=x1-1(k-1)x1+x2-1(k-1)x2=1k-12x1x2-(x1+x2)x1x2
=1k-12k2+2k-4k21k2=2.
所以1λ+1μ為定值.
5.解 由題知F12,0.
設(shè)l1:y=a,l2:y=b,則ab≠0,
且Aa22,a,Bb22,b,P-12,a,Q-12,b,R-12,a+b2.
記過(guò)A,B兩點(diǎn)的直線為l,
則l的方程為2x-(a+b)y+ab=0.
(1)證明:由于F在線段AB上,故1+ab=0.
記AR的斜率為k1,FQ的斜率為k2,
則k1=a-b1+a2=a-ba2-ab=1a=-aba=-b=k2.
所以AR∥FQ.
(2)設(shè)l與x軸的交點(diǎn)為D(x1,0),
則S△ABF=12|b-a||FD|=12|b-a|x1-12,S△PQF=|a-b|2.
由題設(shè)可得212|b-a|x1-12=|a-b|2,
所以x1=0(舍去),x1=1.
設(shè)滿足條件的AB的中點(diǎn)為E(x,y).
當(dāng)AB與x軸不垂直時(shí),由kAB=kDE可得2a+b=yx-1(x≠1).
而a+b2=y,所以y2=x-1(x≠1).
當(dāng)AB與x軸垂直時(shí),E與D重合.
所以,所求軌跡方程為y2=x-1.
6.解 (1)設(shè)橢圓的半焦距為c.
因?yàn)闄E圓E的離心率為12,兩準(zhǔn)線之間的距離為8,
所以ca=12,2a2c=8,解得a=2,c=1,于是b=a2-c2=3,因此橢圓E的標(biāo)準(zhǔn)方程是x24+y23=1.
(2)由(1)知,F1(-1,0),F2(1,0).
設(shè)P(x0,y0),因?yàn)镻為第一象限的點(diǎn),故x0>0,y0>0.
當(dāng)x0=1時(shí),l2與l1相交于F1,與題設(shè)不符.
當(dāng)x0≠1時(shí),直線PF1的斜率為y0x0+1,直線PF2的斜率為y0x0-1.
因?yàn)閘1⊥PF1,l2⊥PF2,所以直線l1的斜率為-x0+1y0,直線l2的斜率為-x0-1y0,
從而直線l1的方程:y=-x0+1y0(x+1), ①
直線l2的方程:y=-x0-1y0(x-1). ②
由①②,解得x=-x0,y=x02-1y0,
所以Q-x0,x02-1y0.
因?yàn)辄c(diǎn)Q在橢圓上,由對(duì)稱性,得x02-1y0=y0,即x02-y02=1或x02+y02=1.
又P在橢圓E上,故x024+y023=1.
由x02-y02=1,x024+y023=1,解得x0=477,y0=377;x02+y02=1,x024+y023=1,無(wú)解.
因此點(diǎn)P的坐標(biāo)為477,377.