新編高考數(shù)學(xué)理一輪資源庫 第10章學(xué)案
新編高考數(shù)學(xué)復(fù)習(xí)資料
學(xué)案49 橢 圓
導(dǎo)學(xué)目標(biāo): 1.了解圓錐曲線的實(shí)際背景,了解圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用.2.掌握橢圓的定義,幾何圖形、標(biāo)準(zhǔn)方程及其簡單幾何性質(zhì).
自主梳理
1.橢圓的概念
平面內(nèi)到兩個(gè)定點(diǎn)F1、F2的距離的和等于常數(shù)(大于F1F2)的點(diǎn)的軌跡叫做________.這兩定點(diǎn)叫做橢圓的________,兩焦點(diǎn)間的距離叫______.
集合P={M|MF1+MF2=2a},F(xiàn)1F2=2c,其中a>0,c>0,且a,c為常數(shù):
(1)若______,則集合P為橢圓;
(2)若______,則集合P為線段;
(3)若______,則集合P為空集.
2.橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)
標(biāo)準(zhǔn)方程
+=1
(a>b>0)
+=1
(a>b>0)
圖形
性
質(zhì)
范圍
-a≤x≤a
-b≤y≤b
-b≤x≤b
-a≤y≤a
對(duì)稱性
對(duì)稱軸:坐標(biāo)軸 對(duì)稱中心:原點(diǎn)
頂點(diǎn)
A1(-a,0),A2(a,0)
B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a)
B1(-b,0),B2(b,0)
軸
長軸A1A2的長為2a;短軸B1B2的長為2b
焦距
F1F2=2c
離心率
e=∈(0,1)
a,b,c
的關(guān)系
c2=a2-b2
自我檢測(cè)
1.已知兩定點(diǎn)A(-1,0),B(1,0),點(diǎn)M滿足MA+MB=2,則點(diǎn)M的軌跡是____________.
2.“m>n>0”是方程“mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓”的________條件.
3.已知F1、F2是橢圓的兩個(gè)焦點(diǎn),過F1且與橢圓長軸垂直的直線交橢圓于A、B兩點(diǎn),若△ABF2是正三角形,則這個(gè)橢圓的離心率是________.
4.橢圓+=1的焦點(diǎn)為F1和F2,點(diǎn)P在橢圓上,如果線段PF1的中點(diǎn)在y軸上,那么PF1=________,PF2=________.
5.橢圓5x2+ky2=5的一個(gè)焦點(diǎn)是(0,2),那么k=________.
探究點(diǎn)一 橢圓的定義及應(yīng)用
例1 一動(dòng)圓與已知圓O1:(x+3)2+y2=1外切,與圓O2:(x-3)2+y2=81內(nèi)切,試求動(dòng)圓圓心的軌跡方程.
變式遷移1 求過點(diǎn)A(2,0)且與圓x2+4x+y2-32=0內(nèi)切的圓的圓心的軌跡方程.
探究點(diǎn)二 求橢圓的標(biāo)準(zhǔn)方程
例2 求滿足下列各條件的橢圓的標(biāo)準(zhǔn)方程:
(1)長軸是短軸的3倍且經(jīng)過點(diǎn)A(3,0);
(2)經(jīng)過兩點(diǎn)A(0,2)和B.
變式遷移2 (1)已知橢圓過(3,0),離心率e=,求橢圓的標(biāo)準(zhǔn)方程;
(2)已知橢圓的中心在原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,且經(jīng)過兩點(diǎn)P1(,1)、P2(-,-),求橢圓的標(biāo)準(zhǔn)方程.
探究點(diǎn)三 橢圓的幾何性質(zhì)
例3 已知F1、F2是橢圓的兩個(gè)焦點(diǎn),P為橢圓上一點(diǎn),∠F1PF2=60°.
(1)求橢圓離心率的范圍;
(2)求證:△F1PF2的面積只與橢圓的短軸長有關(guān).
變式遷移3 已知橢圓+=1(a>b>0)的長、短軸端點(diǎn)分別為A、B,從此橢圓上一點(diǎn)M(在x軸上方)向x軸作垂線,恰好通過橢圓的左焦點(diǎn)F1,AB∥OM.
(1)求橢圓的離心率e;
(2)設(shè)Q是橢圓上任意一點(diǎn),F(xiàn)1、F2分別是左、右焦點(diǎn),求∠F1QF2的取值范圍.
方程思想
例4 (14分)(2010·北京朝陽一模)已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的離心率為,且經(jīng)過點(diǎn)M(1,),過點(diǎn)P(2,1)的直線l與橢圓C相交于不同的兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,滿足·=2?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.
【答題模板】
解 (1)設(shè)橢圓C的方程為+=1(a>b>0),
由題意得解得a2=4,b2=3.故橢圓C的方程為+=1.[4分]
(2)若存在直線l滿足條件,由題意可設(shè)直線l的方程為y=k(x-2)+1,由
得(3+4k2)x2-8k(2k-1)x+16k2-16k-8=0.[6分]
因?yàn)橹本€l與橢圓C相交于不同的兩點(diǎn)A,B,設(shè)A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),
所以Δ=[-8k(2k-1)]2-4·(3+4k2)·(16k2-16k-8)>0.
整理得32(6k+3)>0,解得k>-.[9分]
又x1+x2=,x1x2=,且·=2,
即(x1-2)(x2-2)+(y1-1)(y2-1)=,
所以(x1-2)(x2-2)(1+k2)=,
即[x1x2-2(x1+x2)+4](1+k2)=.[11分]
所以[-2×+4](1+k2)==,
解得k=±.所以k=.于是存在直線l滿足條件,其方程為y=x.[14分]
【突破思維障礙】
直線與橢圓的位置關(guān)系主要是指公共點(diǎn)問題、相交弦問題及其他綜合問題.反映在代數(shù)上,就是直線與橢圓方程聯(lián)立的方程組有無實(shí)數(shù)解及實(shí)數(shù)解的個(gè)數(shù)的問題,它體現(xiàn)了方程思想的應(yīng)用,當(dāng)直線與橢圓相交時(shí),要注意判別式大于零這一隱含條件,它可以用來檢驗(yàn)所求參數(shù)的值是否有意義,也可通過該不等式來求參數(shù)的范圍.對(duì)直線與橢圓的位置關(guān)系的考查往往結(jié)合平面向量進(jìn)行求解,與向量相結(jié)合的題目,大都與共線、垂直和夾角有關(guān),若能轉(zhuǎn)化為向量的坐標(biāo)運(yùn)算往往更容易實(shí)現(xiàn)解題功能,所以在復(fù)習(xí)過程中要格外重視.
1.求橢圓的標(biāo)準(zhǔn)方程,除了直接根據(jù)定義外,常用待定系數(shù)法(先定性,后定型,再定參).當(dāng)橢圓的焦點(diǎn)位置不明確而無法確定其標(biāo)準(zhǔn)方程時(shí),可設(shè)方程為+=1 (m>0,n>0且m≠n),可以避免討論和繁雜的計(jì)算,也可以設(shè)為Ax2+By2=1 (A>0,B>0且A≠B),這種形式在解題中更簡便.
2.橢圓的幾何性質(zhì)分為兩類:一是與坐標(biāo)軸無關(guān)的橢圓本身固有的性質(zhì),如:長軸長、短軸長、焦距、離心率等;另一類是與坐標(biāo)系有關(guān)的性質(zhì),如:頂點(diǎn)坐標(biāo),焦點(diǎn)坐標(biāo)等.第一類性質(zhì)是常數(shù),不因坐標(biāo)系的變化而變化,第二類性質(zhì)是隨坐標(biāo)系變化而相應(yīng)改變.
3.直線與橢圓的位置關(guān)系問題.它是高考的熱點(diǎn),通常涉及橢圓的性質(zhì)、最值的求法和直線的基礎(chǔ)知識(shí)、線段的中點(diǎn)、弦長、垂直問題等,分析此類問題時(shí),要充分利用數(shù)形結(jié)合法、設(shè)而不求法、弦長公式及根與系數(shù)的關(guān)系去解決.
(滿分:90分)
一、填空題(每小題6分,共48分)
1.若△ABC的兩個(gè)頂點(diǎn)坐標(biāo)分別為A(-4,0)、B(4,0),△ABC的周長為18,則頂點(diǎn)C的軌跡方程為_________________________________________________________.
2.已知橢圓+=1,長軸在y軸上,若焦距為4,則m=________.
3.已知F1、F2是橢圓的兩個(gè)焦點(diǎn),過F1且與橢圓長軸垂直的直線交橢圓于A、B兩點(diǎn),若△ABF2是等腰直角三角形,則這個(gè)橢圓的離心率為________.
4.已知圓(x+2)2+y2=36的圓心為M,設(shè)A為圓上任一點(diǎn),N(2,0),線段AN的垂直平分線交MA于點(diǎn)P,則動(dòng)點(diǎn)P的軌跡是________.
5.(2011·無錫模擬)橢圓+=1上一點(diǎn)M到焦點(diǎn)F1的距離為2,N是MF1的中點(diǎn),則ON=________.
6.已知橢圓G的中心在坐標(biāo)原點(diǎn),長軸在x軸上,離心率為,且G上一點(diǎn)到G的兩個(gè)焦點(diǎn)的距離之和為12,則橢圓G的方程為______________.
7.橢圓+=1的焦點(diǎn)為F1、F2,點(diǎn)P在橢圓上.若PF1=4,則PF2=________;∠F1PF2的大小為________.
8.(2011·徐州模擬)如圖,已知點(diǎn)P是以F1、F2為焦點(diǎn)的橢圓+=1 (a>b>0)上一點(diǎn),若PF1⊥PF2,tan∠PF1F2=,則此橢圓的離心率是______.
二、解答題(共42分)
9.(14分)(2011·常州模擬)已知方向向量為v=(1,)的直線l過點(diǎn)(0,-2)和橢圓C:+=1(a>b>0)的右焦點(diǎn),且橢圓的離心率為.
(1)求橢圓C的方程;
(2)若已知點(diǎn)D(3,0),點(diǎn)M,N是橢圓C上不重合的兩點(diǎn),且=λ,求實(shí)數(shù)λ的取值范圍.
10.(14分)橢圓ax2+by2=1與直線x+y-1=0相交于A,B兩點(diǎn),C是AB的中點(diǎn),若AB=2,OC的斜率為,求橢圓的方程.
11.(14分)(2010·福建)已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn).
(1)求橢圓C的方程.
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,說明理由.
學(xué)案49 橢 圓
答案
自主梳理
1.橢圓 焦點(diǎn) 焦距 (1)a>c (2)a=c (3)a<c
自我檢測(cè)
1.線段AB 2.充要 3. 4. 5.1
課堂活動(dòng)區(qū)
例1 解 如圖所示,設(shè)動(dòng)圓的圓心為C,半徑為r.
則由圓相切的性質(zhì)知,
CO1=1+r,CO2=9-r,
∴CO1+CO2=10,
而O1O2=6,
∴點(diǎn)C的軌跡是以O(shè)1、O2為焦點(diǎn)的橢圓,其中2a=10,2c=6,b=4.
∴動(dòng)圓圓心的軌跡方程為+=1.
變式遷移1 解 將圓的方程化為標(biāo)準(zhǔn)形式為:
(x+2)2+y2=62,圓心B(-2,0),r=6.
設(shè)動(dòng)圓圓心M的坐標(biāo)為(x,y),
動(dòng)圓與已知圓的切點(diǎn)為C.
則BC-MC=BM,
而BC=6,
∴BM+CM=6.
又CM=AM,
∴BM+AM=6>AB=4.
∴點(diǎn)M的軌跡是以點(diǎn)B(-2,0)、A(2,0)為焦點(diǎn)、線段AB中點(diǎn)(0,0)為中心的橢圓.
a=3,c=2,b=.
∴所求軌跡方程為+=1.
例2 解題導(dǎo)引 確定一個(gè)橢圓的標(biāo)準(zhǔn)方程,必須要有一個(gè)定位條件(即確定焦點(diǎn)的位置)和兩個(gè)定形條件(即確定a,b的大小).當(dāng)焦點(diǎn)的位置不確定時(shí),應(yīng)設(shè)橢圓的標(biāo)準(zhǔn)方程為+=1 (a>b>0)或+=1 (a>b>0),或者不必考慮焦點(diǎn)位置,直接設(shè)橢圓的方程為mx2+ny2=1 (m>0,n>0,且m≠n).
解 (1)若橢圓的焦點(diǎn)在x軸上,
設(shè)方程為+=1 (a>b>0).
∵橢圓過點(diǎn)A(3,0),∴=1,
∴a=3,又2a=3·2b,∴b=1,∴方程為+y2=1.
若橢圓的焦點(diǎn)在y軸上,設(shè)方程為+=1 (a>b>0).
∵橢圓過點(diǎn)A(3,0),∴=1,∴b=3,又2a=3·2b,
∴a=9,∴方程為+=1.
綜上可知橢圓的方程為+y2=1或+=1.
(2)設(shè)經(jīng)過兩點(diǎn)A(0,2),B的橢圓標(biāo)準(zhǔn)方程為mx2+ny2=1,將A,B坐標(biāo)代入方程得?,∴所求橢圓方程為x2+=1.
變式遷移2 解 (1)當(dāng)橢圓的焦點(diǎn)在x軸上時(shí),∵a=3,=,
∴c=,從而b2=a2-c2=9-6=3,
∴橢圓的標(biāo)準(zhǔn)方程為+=1.
當(dāng)橢圓的焦點(diǎn)在y軸上時(shí),
∵b=3,=,∴=,∴a2=27.
∴橢圓的標(biāo)準(zhǔn)方程為+=1.
∴所求橢圓的標(biāo)準(zhǔn)方程為+=1或+=1.
(2)設(shè)橢圓方程為mx2+ny2=1 (m>0,n>0且m≠n).
∵橢圓經(jīng)過P1、P2點(diǎn),∴P1、P2點(diǎn)坐標(biāo)適合橢圓方程,
則
①②兩式聯(lián)立,解得
∴所求橢圓方程為+=1.
例3 解題導(dǎo)引 (1)橢圓上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形,稱為橢圓的焦點(diǎn)三角形,與焦點(diǎn)三角形有關(guān)的計(jì)算或證明常利用正弦定理、余弦定理、PF1+PF2=2a,得到a、c的關(guān)系.
(2)對(duì)△F1PF2的處理方法
?
(1)解 設(shè)橢圓方程為+=1 (a>b>0),
PF1=m,PF2=n.
在△PF1F2中,由余弦定理可知,
4c2=m2+n2-2mncos 60°.
∵m+n=2a,∴m2+n2=(m+n)2-2mn=4a2-2mn.
∴4c2=4a2-3mn,即3mn=4a2-4c2.
又mn≤2=a2(當(dāng)且僅當(dāng)m=n時(shí)取等號(hào)),
∴4a2-4c2≤3a2.∴≥,即e≥.
∴e的取值范圍是.
(2)證明 由(1)知mn=b2,
∴S△PF1F2=mnsin 60°=b2,
即△PF1F2的面積只與短軸長有關(guān).
變式遷移3 解 (1)∵F1(-c,0),則xM=-c,yM=,
∴kOM=-.∵kAB=-,OM∥AB,
∴-=-,∴b=c,故e==.
(2)設(shè)F1Q=r1,F(xiàn)2Q=r2,∠F1QF2=θ,
∴r1+r2=2a,F(xiàn)1F2=2c,
cos θ==
=-1≥-1=0,
當(dāng)且僅當(dāng)r1=r2時(shí),cos θ=0,∴θ∈[0,].
課后練習(xí)區(qū)
1.+=1 (y≠0) 2.8 3.-1 4.橢圓
5.4
解析
連結(jié)MF2,
已知MF1=2,
又MF1+MF2=10,
故MF2=10-MF1=8,如圖,
ON=MF2=4.
6.+=1
解析 由已知得=,2a=12,∴a=6,c=3,b2=a2-c2=9.
故橢圓方程為+=1.
7.2 120°
解析 由PF1+PF2=6,且PF1=4,知PF2=2,
在△PF1F2中,
cos∠F1PF2==-.
∴∠F1PF2=120°.
8.
解析 由題得△PF1F2為直角三角形,設(shè)PF1=m,
∵tan∠PF1F2=,∴PF2=,F(xiàn)1F2=m,
∴e===.
9.解 (1)∵直線l的方向向量為v=(1,),
∴直線l的斜率為k=.
又∵直線l過點(diǎn)(0,-2),
∴直線l的方程為y+2=x.
∵a>b,∴橢圓的焦點(diǎn)為直線l與x軸的交點(diǎn).
∴c=2.又∵e==,∴a=.∴b2=a2-c2=2.
∴橢圓方程為+=1.(6分)
(2)若直線MN⊥y軸,則M、N是橢圓的左、右頂點(diǎn),
λ=或λ=,
即λ=5+2或5-2.
若MN與y軸不垂直,設(shè)直線MN的方程為x=my+3(m≠0).
由得(m2+3)y2+6my+3=0.
設(shè)M、N坐標(biāo)分別為(x1,y1),(x2,y2),
則y1+y2=-,①
y1y2=,②
Δ=36m2-12(m2+3)=24m2-36>0,∴m2>.
∵=(x1-3,y1),=(x2-3,y2),=λ,顯然λ>0,且λ≠1,
∴(x1-3,y1)=λ(x2-3,y2).∴y1=λy2.
代入①②,得λ+=-2=10-.
∵m2>,得2<λ+<10,即
解得5-2<λ<5+2且λ≠1.
綜上所述,λ的取值范圍是5-2≤λ≤5+2,
且λ≠1.(14分)
10.解 方法一 設(shè)A(x1,y1)、B(x2,y2),
代入橢圓方程并作差得
a(x1+x2)(x1-x2)+b(y1+y2)(y1-y2)=0.
而=-1,=kOC=,
代入上式可得b=a.(4分)
由方程組,得(a+b)x2-2bx+b-1=0,
∴x1+x2=,x1x2=,
再由AB= |x2-x1|=|x2-x1|=2,
得2-4·=4,(10分)
將b=a代入得a=,∴b=.
∴所求橢圓的方程是+=1.(14分)
方法二 由
得(a+b)x2-2bx+b-1=0.(2分)
設(shè)A(x1,y1)、B(x2,y2),
則AB==·.
∵AB=2,∴=1.①(6分)
設(shè)C(x,y),則x==,y=1-x=,
∵OC的斜率為,∴=.(10分)
代入①,得a=,b=.
∴橢圓方程為+=1.(14分)
11.解 方法一 (1)依題意,可設(shè)橢圓C的方程為+=1(a>b>0),且可知其左焦點(diǎn)為F′(-2,0).
從而有
解得又a2=b2+c2,所以b2=12,
故橢圓C的方程為+=1.(5分)
(2)假設(shè)存在符合題意的直線l,設(shè)其方程為y=x+t.
由得3x2+3tx+t2-12=0.(7分)
因?yàn)橹本€l與橢圓C有公共點(diǎn),
所以Δ=(3t)2-4×3×(t2-12)≥0,
解得-4≤t≤4.(9分)
另一方面,由直線OA與l的距離d=4,
得=4,解得t=±2.(12分)
由于±2?[-4,4],所以符合題意的直線l不存在.(14分)
方法二 (1)依題意,可設(shè)橢圓C的方程為+=1(a>b>0),
且有解得b2=12或b2=-3(舍去).
從而a2=16.(3分)
所以橢圓C的方程為+=1.(5分)
(2)同方法一.