臘腸烘干機
臘腸烘干機,臘腸,香腸,烘干機
畢業(yè)設(shè)計外文參考文獻翻譯
機械工程 系 2008屆
題 目 臘腸烘干機
The washing and spraying type machine for vegetable
學(xué)生姓名 張志勇 專業(yè)班級 06機制14班
完成日期: 2008 年 3 月 22 日
Contents
1. Abstract ………………………………………………………………………………2
2..ltrasonicCleaning ………………………………………………………………………………2
3. Machining………………………………………………………………………………5
目 錄
1. 摘要……………………………………………………………………………………7
2. 超聲波烘干……………………………………………………………………………9
3. 機械加工………………………………………………………………………………10
Abstract
At modern social people the improvements of living standardses, and foreign trade the developments of cause, vegetables process day by day demand increase products day by day, This ask we want and break artificial to wash dish way a traditional one, realize automation and continuity who vegetables wash is by saving a large amount of manpower, material resources soon, Improve the competitiveness of the products.
This text it expounds the fact to be continuous type wash the necessity and feasibilities of machine by vegetables to develop automation. Vegetables divide into leaf form type vegetables and rhizome type vegetables, remaining to have dust, organic fat, and remaining chemical agriculture chemical, microorganism,etc.ses surface vegetables type leaf,forms more for being flat and long and thin, getting easy to roll over because it is routed to press at section, rhizomes the type vegetables epidermis intensity better, require and skin and eat also more somes very, Exist epidermis problem of damaging. We directed against leaf form type kinds of vegetables and rhizome type kinds of vegetables these two a kind of vegetables the differences of physical properties, Design Model QX-J wash and Model QX-Y leaf form type vegetables washing machine, introduce its technological process and whole structure by rhizome type vegetables separately. Model QX-J rhizome type vegetables wash machine adopt cylinder, the processes of the Model QX-Y washing machine is immiersion washing -- spray washing -- ultrasonic wave washing -- spray washing -- bringing the vegetable out.
ltrasonic Cleaning
Fundamental Theory and Application
Ultrasonic cleaning machine mainly utilize air impacted effect height frequency and vibrational signal, which ultrasonic vibrational case produce,translate mechanical vibrational and transmit into the intermedium via the exchanged energy organ Ultrasonic fardel,nonstopped vibration produce spoke wise and line transmits ted one. can give birth to ten thousands of negative pressured little air bubble. Via the pressure, the air bubble give birth to dense explosin on the surface of cleaned object. The lash the surface of cleaned object around-the-clock continuous continuous, contain another flank that pene trate the cleaned object. All the inside cavithy,blind holke and narrow interstice, that immerge intermedium,will flake off the greasae stain of the claned object surface. The cleaned object will be perfect and very clean. At the same time, ultra is provided with the liquid purpose. The grease stain that have ever been cleaned will be forfended
SANYO Introduces the Worlds First Zero-Detergent Electrolyzed Water Cleaning Powered Washing Machine .
Allows the option of "Detergent Course" or "Non-Detergent Course" according to the extent and type of dirt? .
Tokyo, June 22, 2001---SANYO Electric Co., Ltd., a world leader in Home Appliances announced the sale of the Worlds first Washing Machine using Electrolyzed Water that does not require the use of detergent through the use of Ultrasonic Waves and Electrolysis. Up until now the industry standard and excepted norm of traditional washing machines worked on the principle of using the water from the washing machine's spin function and soap to remove dirt from the clothing. Three years ago SANYO introduced a new type of washing machine that was different from anything ever seen in the washing machine industry: Dirt Removal through the "Ultrasonic Wave Washing Machine".
Lathes
Lathes are machine tools designed primarily to do turning, facing, and boring. Very little turning is done on other types of machine tools, and none can do it with equal facility. Because lathes also can do drilling and reaming, their versatility permits several operations to be done with a single setup of the workpiece. Consequently, more lathes of various types are used in manufacturing than any other machine tool.
The essential components of a lathe are the bed, headstock assembly, tailstock assembly, carriage assembly, and the leadscrew and feed rod.
The bed is the backbone of a lathe. It usually is made of well-normalized or aged gray or nodular cast iron and provides a heavy, rigid frame on which all the other basic components are mounted. Two sets of parallel, longitudinal ways, inner and outer, are contained on the bed, usually on the upper side. Some makers use an inverted V-shaped for all four ways, whereas others utilize one inverted V and one flat way in one or both sets. They are precision-machined to assure accuracy of alignment. On most modern lathes the ways are surface-hardened to resist wear and abrasion, but precaution should be taken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed.
The headstock is mounted in a fixed position on the inner ways, usually at the left end of the bed. It provides a powered means of the rotating the work at various speeds. Essentially, it consists of a hollow spindle, mounted in accurate bearings, and a set of transmission gears—similar to a truck transmission—through which the spindle can be rotated at a number of speeds. Most lathes provide from 8 to 18 speeds, usually in a geometric ratio, and on modern lathes all the speeds can be obtained merely by moving from two to four levers. An increasing trend is to provide a continuously variable speed range through electrical or mechanical drives.
Because the accuracy of a lathe is greatly dependent on the spindle, it is of heavy construction and mounted in heavy bearings, usually preloaded tapered roller or ball types. The spindle has a hole extending through its length, through which long bar stock can be fed. The size of this hole is an important dimension of a lathe because it determines the maximum size of bar stock that can be machined when the material must be fed through spindle.
The tailstock assembly consists, essentially, of three parts. A lower casting fits on the inner ways of the bed and can slide longitudinally thereon, with a means for clamping the entire assembly in any desired location. An upper casting fits on lower
one and can be moved transversely upon it, on some type of keyed ways, to permit aligning the tailstock and headstock spindles. The third major component of the assembly is the tailstock and headstock quill. This is a hollow steel cylinder, usually about 51 to 76 mm (2 to 3 inches) in diameter, that can be moved several inches longitudinally in and out of the upper casting by means of a handwheel and screw.
The size of a lathe is designated by two dimensions. The first is known as the swing. This is the maximum diameter of work that can be rotated on a lathe. It is approximately twice the distance between the line connecting the lathe centers and the nearest point on the ways. The second size dimension is the maximum distance between centers. The swing thus indicates the maximum workpiece diameter that can be turned in the lathe, while the distance between centers indicates the maximum length of workpiece that can be mounted between centers.
Engine lathes are the type most frequently used in manufacturing. They are heavy-duty machine tools with all the components described previously and have power drive for all tool movements except on the compound rest. They commonly range in size from 305 to 610 mm (12 to 24 inches) swing and from 610 to 1219 mm (24 to 48 inches) center distances, but swings up to 1270 mm (50 inches) and center distances up to 3658 mm (12 feet) are not uncommon. Most have chip pans and a built-in coolant circulating system. Smaller engine lathes—with swings usually not over 330 mm (13 inches)—also are available in bench type, designed for the bed to be mounted on a bench or cabinet.
Although engine lathes are versatile and very useful, because of the time required for changing and setting tools and for making measurements on the workpiece, they are not suitable for quality production. Often the actual chip-production time is less than 30% of the total cycle time. In addition, a skilled machinist is required for all the operations, and such persons are costly and often in short supply. However, much of the operator's time is consumed by simple, repetitious adjustments and in watching chips being mad. Consequently, to reduce or eliminate the amount of skilled labor that is required, turret lathes, screw machines, and other types of semiautomatic lathes have been highly developed and are widely used in manufacturing.
Machining
Turning
The engine lathe, one of the oldest metal removal machines, has a number of useful and highly desirable attributes. Today these lathes are used primarily in small shops where smaller quantities rather than large production runs are encountered.
The engine lathe has been replaced in today's production shops by a wide variety of automatic screw machines. All the advantage of single-point tooling for maximum metal removal, and the use of form tools for finish and accuracy, are now at the designer's fingertips with production speeds on a par with the fastest processing equipment on the scene today.
Tolerances for the engine lathe depend primarily on the skill of the operator. The design engineer must be careful in using tolerances of an experimental part that has been produced on the engine lathe by a skilled operator. In redesigning an experimental part for production, economical tolerances should be used.
.
Milling
With the exceptions of turning and drilling, milling is undoubtedly the most widely method of removing metal. Well suited and readily adapted to the economical production of any quantity of parts, the almost unlimited versatility of the milling process merits the attention and consideration of designers seriously concerned with the manufacture of their product.
As in any other process, parts that have to be milled should be designed with economical tolerances that can be achieved in production milling. If the part is designed with tolerances finer than necessary, additional operations will have to be added to achieve these tolerances—and this will increase the cost of the part.
Grinding
Grinding is one of the most widely used methods of finishing parts to extremely close tolerances and fine surface finishes. Currently, there are grinders for almost every type of grinding operation. Particular: cylindrical grinders, centerless grinders, internal grinders, surface grinders, and tool and cutter grinders.
The cylindrical and centerless grinders are for straight cylindrical or taper work; thus splines, shafts, and similar parts are ground on cylindrical machinesdesign features of a part dictate to a large degree the type of grinding machine required. Where processing costs are excessive, parts redesigned to utilize a less expensive, higher output grinding method may be well worthwhile. For example, wherever possible the production economy of centerless grinding should be taken advantage of by proper design consideration.
Although grinding is usually considered a finishing operation, it is often employed as a complete machining process on work which can be ground down from rough condition without being turned or otherwise machined. Thus many types of forgings and other parts are finished completely with the grinding wheel at appreciable savings of time and expense.
Classes of grinding machines include the following either of the common-center type or the centerless machine.
Thread grinders are used for grinding precision threads for thread gages, and threads on precision parts where the concentricity between the diameter of the shaft and the pitch diameter of the thread must be held to close tolerances.
The internal grinders are used for grinding of precision holes, cylinder bores, and similar operations where bores of all kinds are to be finished.
The surface grinders are for finishing all kinds of flat work, or work with plain surfaces which may be operated upon either by the edge of a wheel or by the face of a grinding wheel. These machines may have reciprocating or rotating tables
摘 要
隨著現(xiàn)代社會人們生活水平的提高,以及外貿(mào)事業(yè)的發(fā)展,臘腸加工產(chǎn)品的日益需求量日益增大,這就要求我們要打破傳統(tǒng)的人工洗菜方式,實現(xiàn)臘腸烘干的機械化和自動化,以節(jié)省大量的人力、物力,提高產(chǎn)品競爭力。
本文論述了研制自動化連續(xù)型臘腸烘干機的必要性和可行性。臘腸可以分為葉狀類臘腸和根莖類臘腸,葉類臘腸表面殘存有塵土、有機肥、及殘存的化學(xué)農(nóng)藥、微生物等,且葉類臘腸本身比較嫩脆,容易折段壓潰,而根莖類臘腸表皮強度較好,有的還要求去皮食用,不存在表皮損傷問題。我們針對葉狀類類臘腸和根莖類類臘腸這兩種臘腸物理性質(zhì)的不同,分別設(shè)計了QX-J型根莖類臘腸烘干機和QX-Y型葉狀類臘腸烘干機,并介紹了其工藝流程和整體結(jié)構(gòu)。QXJ型根莖類臘腸烘干機采用滾筒方式烘干,QX-Y型葉狀類臘腸烘干機的工藝流程為浸泡烘干 -- 噴射烘干 -- 超聲波烘干 -- 噴淋烘干 -- 出菜。
關(guān)鍵詞
設(shè)備 性能 自動化 浸泡 噴淋 超聲波烘干 水處理
超聲波烘干:基本原理及應(yīng)用
利用高于20KHZ的超音頻電能,通過換能器轉(zhuǎn)換成高頻機械振蕩而傳入到烘干液中。超聲波在烘干液中疏密地向前輻射,使液體移動,并產(chǎn)生數(shù)萬計的微小氣泡,這些氣泡在超聲波縱向傳播的負壓區(qū)形成、生產(chǎn)、迅速閉合稱為空化現(xiàn)象。在空化現(xiàn)象中氣泡閉合時形成超過1000個大氣壓的瞬時高壓,連續(xù)不斷產(chǎn)生的瞬時高壓就像一連串小爆炸不斷地轟擊物體表面,使物體表面及縫隙中污垢迅速剝落,這種空化侵蝕作用就是超聲波烘干的基本原理。
SANYO 首先介紹世界沒有洗滌劑,將電解水作為動力的洗衣機,根據(jù)范圍和灰塵的類型可以選擇用洗滌濟或不用洗滌濟進行烘干。
SANYO 電氣股份有限公司--世界在家庭用具的領(lǐng)導(dǎo)人于2001 年6月22 日在東京宣布首先使用超聲波和電解水而不需要洗滌濟的洗衣機出售。 直到現(xiàn)在,工業(yè)標準和傳統(tǒng)習慣都是利用水在洗衣機里的旋轉(zhuǎn)運動,肥皂可從衣服上除去灰塵和污垢。3年以前SANYO提出了不同于任何過去的烘干機的的一種洗衣機: 超聲波烘干機。
車床
車床主要是為了進行車外圓、車斷面和鏜孔等工作而設(shè)計的機床。很少有車削在其他類型機床上進行,任何機床都不如車床用來車削那樣方便。因為車床還能夠用于鉆孔和鉸孔,他們的多功能性允許工件再一次裝夾中完成幾種加工。因此,在生產(chǎn)加工中各種車床的使用比其他機床要多。
車床的基本部件有:床身、主軸箱組件、尾架組件、拖板組件、絲杠和光杠。
床身是車床的支架。它通常是由經(jīng)過良好正火或失效處理的灰鑄鐵或球墨鑄鐵制成。床身提供了堅固的剛性框架,所有其他基本部件都安裝在床身上。通常在床身上部有內(nèi)外兩組縱向排列的平行導(dǎo)軌。一些生產(chǎn)廠家對四條導(dǎo)軌都采用導(dǎo)軌頂尖朝上的方式(三角形導(dǎo)軌),而另一些制造廠對一組或兩組導(dǎo)軌都采用一個三角形導(dǎo)軌和一個平行導(dǎo)軌。導(dǎo)軌需要精加工以保證其直線度精度。為了抵抗磨損和擦傷,大多數(shù)現(xiàn)代化機床都是經(jīng)過表面淬硬的。但是在機械加工時還得謹慎小心以免導(dǎo)軌遭到破壞,導(dǎo)軌的任何不精確度常常意味著整臺機床的精度遭到破壞。
主軸箱安裝在內(nèi)側(cè)導(dǎo)軌的固定位置上, 通常在床身的邊端。 它提供動力以使工件在不同速度下旋轉(zhuǎn)。主軸箱基本上由安裝在精密軸承中的空心主軸和一系列變速齒輪—— 類似于卡車變速箱——所組成。通過變速齒輪主軸,可以在很多轉(zhuǎn)速下旋轉(zhuǎn)。大多數(shù)車窗提供8支8種轉(zhuǎn)速,轉(zhuǎn)速通常按等比級數(shù)排列。而且在現(xiàn)代機床上全部轉(zhuǎn)速都可通過扳動到2到4個手柄得到。一種不斷漸增的趨勢是通過電的或機械的裝置提供無級變速。
由于機床的精度在很大程度上取決于主軸,因此,主軸具有較大的結(jié)構(gòu)尺寸,通常安裝在預(yù)緊后的重型圓錐滾子軸承或球軸承中。主軸上有一個貫穿全長的通孔,通過該孔長棒料可以進料。這個孔的大小是車床上一個非常重要的尺寸,因為當原材料必須通過主軸孔供料時,它決定了能夠被加工的棒料毛坯的最大尺寸。
尾架組件基本上包括三個部分。底板和床身內(nèi)側(cè)導(dǎo)軌配合,并且能夠在導(dǎo)軌上縱向滑動。底板上有一個可使整個尾架組件在任意位置上夾緊的裝置。尾架體安裝在底板上,可以沿某種類型的鍵槽在底板上橫向移動,使尾架能與主軸箱中的主軸對正。尾架的第三個部分是尾架套筒。它是一個中空的圓柱體,直徑通常約為51至76毫米(2到3英尺)。通過手輪和螺桿,尾架套筒可以在尾架體中移入和移出幾寸。
車床的規(guī)格用兩個尺寸來表示。第一個稱為最大加工直徑。這是在車床上能過旋轉(zhuǎn)的工件的最大直徑,它大約是車床中心連線與導(dǎo)軌上最近點連線距離的2倍。第二個規(guī)格是兩頂尖之間的最大距離。車床床面上最大加工直徑表示在車床能車削的工件最大直徑,而兩頂尖之間的最大距離則表示在兩頂尖之間能夠安裝的工件的最大長度。
普通車床是生產(chǎn)加工中最常用的車床類型。它們是具有前面所描述的所有部件的重載機床,并且除了復(fù)合支架以外,所有的刀具運動都有機驅(qū)動。它們通常的規(guī)格尺寸是:床面上最大加工直徑為305至610毫米(12至4英寸),兩頂尖之間的距離為610至219毫米(24至48英寸)。但是床面上最大加工直徑大刀270毫米(50英寸),兩頂尖之間的距離達到3658毫米(12英尺)也并不少見。這些車床大部分都有切削盤和一個安裝在內(nèi)部的冷卻液系統(tǒng)。小的普通車床——床面最大加工直徑通常不超過30毫米(13英寸)——被設(shè)計為臺式車床,床身被安裝在工作臺或柜子上。
盡管普通車床的應(yīng)用多種多樣,且非常有用,但是由于更換和調(diào)整刀具以及對工件進行測量要花費很多時間,它們并不適合在大批量生產(chǎn)中應(yīng)用。通常實際的生產(chǎn)時間總少于全部生產(chǎn)循環(huán)時間的30%。另外,需要熟練的技術(shù)工人來進行所有操作,而這些技工的工資很高并且常常雇傭不到。然而操作者的大部分時間卻花費在簡單的重復(fù)調(diào)整和觀察切削的產(chǎn)生上。因此,為了減少或不再雇傭這些熟練工人,六角車床、螺絲車床和其他種類的半自動和自動車床已經(jīng)被成功地開發(fā)出來,并且已經(jīng)在生產(chǎn)中獲得廣泛應(yīng)用。
機械加工
車削
普通車床作為最簡單的金屬切削機床中的一種,有許多有用的和為人們所需要的特性。今天這些車床被主要地用于小工廠中,用來進行小批量生產(chǎn)而非大批量生產(chǎn)。
在今天的生產(chǎn)車間中,普通車床已經(jīng)被各種各樣的自動車床所代替,諸如自動仿形車、六角車床和自動螺絲車床。用單刃刀具去除大部分的金屬余量,然后用成型刀具獲得表面光潔度和精度這種加工方法的優(yōu)點,現(xiàn)在用在設(shè)計人員的手指尖上的生產(chǎn)速度等同于今天工廠中使用的最快的加工設(shè)備的速度。
普通車床的加工偏差主要取決于操作者的熟練程度。設(shè)計工程師必須認真地確定由一個熟練的操作者在普通車床上生產(chǎn)試驗零件所用的公差。在把試驗零件重新設(shè)計為生產(chǎn)零件時,應(yīng)該選用經(jīng)濟的公差。
銑削
除了車削和鉆削,銑削無疑是最廣泛應(yīng)用的金屬切削方法。銑削非常適合于也易于應(yīng)用在任何數(shù)量的零件的批量生產(chǎn)中。銑削過程的幾乎不受限制的多種使用性能,值得設(shè)計人員在他們的產(chǎn)品生產(chǎn)中認真考慮和選擇。
正如和其他加工種類一樣,需要銑削的零件應(yīng)該設(shè)計好在銑削加工中可以獲得的經(jīng)濟公差。如果零件的設(shè)計公差比需要的公差小,那么,為了獲得這個較小的公差,就需要增加一些額外的操作——這將會增加工件的成本。
磨削
磨削是廣泛使用的零件精加工方法之一,用來獲得極小的公差和較好的表面光潔度。目前,幾乎存在適合所有磨削操作的磨床。零件獨特的設(shè)計特征在很大程度上決定了需要采用的磨床的種類。當生產(chǎn)成本太高時,就值得對零件進行重新設(shè)計,以便采用一種即便宜又具有高生產(chǎn)率的磨削方法進行加工。例如,在有可能的時候,通過對適當?shù)脑O(shè)計方法的考慮,采用無心磨削的方法可以獲得好的經(jīng)濟效益。
盡管磨削經(jīng)常被認為是精加工工序,對于那些采用磨削進行粗、精加工的工件,常常用磨削的方法完成整個加工工作,而不用車削或其他加工方法。因而許多種類的鍛件和其他零件的加工都是完全采用砂輪磨削的方法完成的,而且節(jié)省時間和費用。
磨床包括以下幾種類型:外圓磨床、無心磨床、內(nèi)圓磨床、平面磨床和工具磨床。
外圓磨床和無心磨床是用來磨削圓柱形工件或圓錐形工件的。因此,花鍵軸、軸和其他類似的零件是采用普通的外圓磨床,或是采用無心磨床進行加工的。
螺紋磨床用來磨削螺紋量規(guī)上的精密螺紋,和用來磨削螺紋的中徑與軸的同心度公差很小的精密零件上的螺紋。
內(nèi)圓磨床用來磨削精密的孔、汽缸孔以及各種各樣類似的、需要進行精加工的孔。
平面磨床用來對各種平面工件,或者對帶有平面的工件進行精加工。這種平面工件可以采用砂輪的邊或砂輪的端面進行磨削。這類機床上裝有往復(fù)式工作臺或回轉(zhuǎn)式工作臺。
課題分析
1 臘腸烘干目的
一般數(shù)來,對臘腸烘干的目的主要有以下兩個:
一、除去臘腸原料表面沾染的泥沙、雜質(zhì)
臘腸原料在其生長、成熟、采摘、貯存、運輸過程中,歷經(jīng)時間長,歷經(jīng)工序多,不可避免地會沾染泥沙、雜質(zhì)等異物,特別是來自地下的果實,如土豆、紅薯等,更是不可避免地與泥土相粘連.這些泥土、雜質(zhì)的存在,將會對產(chǎn)品的加工質(zhì)量帶來極為不利的影響.所以必須將這些泥沙、雜質(zhì)的洗滌除去.
二、去原料表面沾染的農(nóng)藥和微生物
臘腸原料在生長過程中,為了控制病蟲害,常常對臘腸要噴射一些農(nóng)藥,這些農(nóng)藥的存在會有損于人體健康.另外,臘腸表面也會或多或少地沾染各種微生物,這些微生物有可能危害臘腸原料和人體健康,因此必須將其除去.
臘腸原料烘干目的是去除臘腸原料中一切不符合作業(yè)要求的物質(zhì),尤其是微生物。在烘干前,正常的臘腸原料表面上的微生物數(shù)量在10000-100000000個/g之間,某些臘腸,由于往往粘附著泥土,微生物數(shù)量還要高得多。通過正確的烘干工藝,臘腸原料的微生物數(shù)量會降低到初始數(shù)量的2.5-5%左右。
2 烘干工藝及設(shè)備設(shè)計的要求
在選擇烘干工藝及設(shè)備,必須考慮烘干要求達到的洗凈程度。對不同洗凈程度要求的烘干應(yīng)選擇不同的烘干工藝和設(shè)備。洗凈程度要求越高,烘干成本也越高,而且生產(chǎn)成本是以幾何級數(shù)遞增的。
在設(shè)計烘干工藝及烘干設(shè)備時,主要從以下幾個方面進行考慮:
一、可靠性 要求選用的烘干工藝及設(shè)備有穩(wěn)定的烘干質(zhì)量,能達到所要求的洗凈程度;
二、對待烘干對象的影響 要求在烘干過程中對待烘干對象造成的損傷盡可能小,并且不能對待烘干對象產(chǎn)生新的二次污染;
三、利于自然環(huán)境的保護 要求烘干工藝及設(shè)備能夠防止或盡可能減少烘干廢液、噪聲、廢氣等對自然環(huán)境造成的破壞;
四、效率 要求烘干工藝及設(shè)備具有效率高、節(jié)約勞動力的特點;
五、良好的作業(yè)環(huán)境 要求所用的烘干工藝及設(shè)備能保持良好的作業(yè)環(huán)境,使工人的健康和安全得到保證;
六、經(jīng)濟性 要求采用既能達到洗凈程度要求,成本又低的烘干工藝及要求。
食品加工原料在其成熟階段以及運輸、貯藏過程中常常受塵埃、沙粒及微生物等污染,因此,在加工前必須認真烘干,并清除雜物及不合格部分,以便后道工序加工。
3 常見方案分析
3.1 刷淋式烘干機
刷淋式烘干機通過浸泡、刷洗和噴淋作用能夠有效地提高烘干效果,水槽中的烘干水還能采用蒸氣直接加熱,適用于蘋果、柑桔、梨、番茄等果蔬的烘干。
工作時,物料從進料口進入烘干槽內(nèi),在裝有毛刷的刷輥相對向內(nèi)旋轉(zhuǎn)作用下,使物料在水的攪動形成的渦動環(huán)流中得到烘干,同時由于刷輥之間水流壓力差作用,物料自動向刷輥間流動而被刷洗。刷洗后的物料向上浮起,經(jīng)翻料斗沿圓弧面移動,受高壓水噴淋沖洗,最后由出料口流出。
3.2 槳葉式烘干機
槳葉式烘干機是通過旋轉(zhuǎn)的槳葉,攪動浸泡在水中的原料,將物料進行翻滾、摩擦而完成烘干過程,主要適用于質(zhì)地較堅硬和表面抗損較強的原料。
槳葉式烘干機主要由槽體、槳葉、撈料斗等組成。槽體是一個長方形臥式敞口槽,下部為半圓筒形的空花假底,其下是1-2個漏斗,可收集泥沙雜物。槽體一般用不銹鋼板焊接而成。主軸縱貫槽體,其上按一定間隔安裝有槳葉,相鄰槳葉互相垂直排列,槳葉具有鈍形棱角,可保護原料少受損傷。在槽體末端安有撈料斗,由主軸帶動回轉(zhuǎn)。
工作時,往槽體中先裝清水,再使主軸旋轉(zhuǎn),然后將原料倒入槽體,由于槳葉的轉(zhuǎn)動,攪動原料,使其翻滾運動,另外,由于槳葉相對于主軸有一定角度,從而推動原料使其向槽體末端移動,在此過程中基本完成了對原料的烘干,至末端由撈料斗撈出,在原料撈出時,清水噴頭噴出清水,完成了對原料的烘干噶過程。而洗下的泥沙雜物則穿過空花假底,聚集于漏斗之中,可定期打開斗底排污閥將其排出機外。
3.4 浸泡式烘干機
浸泡噴洗機是先將原料浸泡于水中,使泥沙雜質(zhì)在水的浸泡變得松脫,然后受到高壓水流的噴射,使原料表面的附著物沖洗掉而達到烘干的目的。
工作時,先將斜壁水槽中注滿水,再倒入需烘干的原料,經(jīng)過一定時間浸泡后,開始傳動裝置使輸送帶運轉(zhuǎn),輸送帶則帶動原料上行,在噴淋區(qū)內(nèi)高壓水流從噴淋頭直噴向原料,將原料上沾染的泥沙、塵土、雜質(zhì)沖洗干凈。若原料上沾染了化學(xué)試劑,也很容易除去。
浸泡噴洗機結(jié)構(gòu)主要有斜壁水槽、輸送帶、噴淋頭、傳動裝置等組成。輸送帶呈傾斜安裝,與水平面的夾角為25-30度,輸送帶用金屬網(wǎng)制造,以利瀝水,在金屬網(wǎng)上間隔一定距離安裝一根橫條,以便擋住物料下滑。斜壁水槽的斜角與輸送帶的斜角相同,在輸送帶的中部上方裝有多排噴淋頭,輸送帶由傳動裝置帶動運動。
3.5滾筒式烘干機
滾筒式烘干機是借助圓形滾筒的轉(zhuǎn)動,使原料在其中不斷地翻轉(zhuǎn),同時用水管噴射水流來沖洗翻動原料,以達到烘干的目的。該機適合烘干柑橘、橙子、馬鈴薯等根莖類臘腸。
滾筒式烘干機的特點是:結(jié)構(gòu)簡單,烘干效率高,工作平穩(wěn),不存在力不平衡現(xiàn)象, 對原料的適應(yīng)性強。 另外由于沿滾筒內(nèi)壁焊有幾根管子,大大地提高了滾筒的烘干效果。不足之處是整個機械的占地面積大。
針對葉片類臘腸的特點, 只有刷淋式烘干機和浸泡式烘干機適合于烘干?,F(xiàn)在針對這兩種方式我們進行對比研究,力爭設(shè)計出最佳機構(gòu)。
12
收藏