2019年高考數(shù)學 考點分析與突破性講練 專題23 基本不等式及不等式應用 理.doc
《2019年高考數(shù)學 考點分析與突破性講練 專題23 基本不等式及不等式應用 理.doc》由會員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學 考點分析與突破性講練 專題23 基本不等式及不等式應用 理.doc(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
專題23 基本不等式及不等式應用 一、 考綱要求: 1.了解基本不等式的證明過程. 2.會用基本不等式解決簡單的最大(小)值問題. 二、概念掌握及解題上的注意點: 1.利用基本不等式求最值的方法 利用基本不等式解決條件最值的關(guān)鍵是構(gòu)造和為定值或積為定值,主要有兩種思路: (1))對條件使用基本不等式,建立所求目標函數(shù)的不等式求解.常用的方法有:拆項法、變系數(shù)法、湊因子法、換元法、整體代換法等. (2))條件變形,進行“1”的代換求目標函數(shù)最值. 2.求解含參數(shù)不等式的求解策略 (1))觀察題目特點,利用基本不等式確定相關(guān)成立條件,從而得參數(shù)的值或取值范圍. (2))在處理含參數(shù)的不等式恒成立問題時,往往將已知不等式看作關(guān)于參數(shù)的不等式,體現(xiàn)了主元與次元的轉(zhuǎn)化. 三、高考考題題例分析: 例1.(2018天津卷) 已知a,b∈R,且a﹣3b+6=0,則2a+的最小值為 ?。? 【答案】 例2.(2018江蘇卷)在△ABC中,角A,B,C所對的邊分別為a,b,c,∠ABC=120,∠ABC的平分線交AC于點D,且BD=1,則4a+c的最小值為 ?。? 【答案】9 【解析】:由題意得acsin120=asin60+csin60, 即ac=a+c, 得+=1, 得4a+c=(4a+c)(+)=++5≥2+5=4+5=9, 當且僅當=,即c=2a時,取等號, 故答案為:9. 例3.(2017山東卷)若,且,則下列不等式成立的是 (A) (B) (C) (D) 【答案】B 例4.(2017天津卷)若,,則的最小值為___________. 【答案】4 【解析】: ,(前一個等號成立條件是,后一個等號成立的條件是,兩個等號可以同時取得,則當且僅當時取等號). 例5.( 2017江蘇卷)某公司一年購買某種貨物600噸,每次購買噸,運費為6萬元/次,一年的總存儲費用為萬元,要使一年的總運費與總存儲之和最小,則的值是 . 【答案】30 【解析】:總費用,當且僅當,即時等號成立. 例6.(2015高考陜西卷)設,若,,,則下列關(guān)系式中正確的是( ) A. B. C. D. 【答案】C 例7.( 2015高考四川卷)如果函數(shù)在區(qū)間上單調(diào)遞減,則mn的最大值為( ) (A)16 (B)18 (C)25 (D) 【答案】B 【解析】:時,拋物線的對稱軸為.據(jù)題意,當時,即..由且得.當時,拋物線開口向下,據(jù)題意得,即..由且得,故應舍去.要使得取得最大值,應有.所以,所以最大值為18.選B.. 基本不等式練習 一、選擇題 1.“x≥1”是“x+≥2”的 ( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 【答案】A 【解析】:x+≥2?x>0,所以“x≥1”是“x+≥2”的充分不必要條件,故選A. 2.設x>0,y>0,且x+y=18,則xy的最大值為 ( ) A.80 B.77 C.81 D.82 【答案】C 【解析】:∵x>0,y>0,∴≥,即xy≤=81,當且僅當x=y(tǒng)=9時,(xy)max=81. 3.已知f(x)=x+-2(x<0),則f(x)有 ( ) A.最大值0 B.最小值0 C.最大值-4 D.最小值-4 【答案】C 4.若函數(shù)f(x)=x+(x>2)在x=a處取最小值,則a等于 ( ) A.1+ B.1+ C.3 D.4 【答案】C 【解析】:當x>2時,x-2>0,f(x)=(x-2)++2≥2+2=4,當且僅當x-2=(x>2),即x=3時取等號,即當f(x)取得最小值時,x=3,即a=3,選C. 5.已知x,y>0且x+4y=1,則+的最小值為 ( ) A.8 B.9 C.10 D.11 【答案】B 【解析】:∵x+4y=1(x,y>0),∴+=+=5+≥5+2=5+4=9. 6.已知a>0,b>0,則的最小值為 ( ) A. B.1 C.2 D.4 【答案】D 7.已知x>1,y>1,且lg x,2,lg y成等差數(shù)列,則x+y有 ( ) A.最小值20 B.最小值200 C.最大值20 D.最大值200 【答案】B 【解析】:由題意得22=lg x+lg y=lg(xy),所以xy=10 000,則x+y≥2=200,當且僅當x=y(tǒng)=100時,等號成立,所以x+y的有最小值200,故選B. 8.設a>0,若關(guān)于x的不等式x+≥5在(1,+∞)上恒成立,則a的最小值為 ( ) A.16 B.9 C.4 D.2 【答案】C 【解析】:在(1,+∞)上,x+=(x-1)++1≥2+1=2+1(當且僅當x=1+時取等號),由題意知2+1≥5.所以2≥4,≥2,a≥4. 9. 要制作一個容積為4 m3,高為1 m的無蓋長方體容器.已知該容器的底面造價是每平方米20元,側(cè)面造價是每平方米10元,則該容器的最低總造價是 ( ) A.80元 B.120元 C.160元 D.240元 【答案】C 【解析】:設底面相鄰兩邊的邊長分別為x m,y m,總造價為T元,則xy1=4?xy=4. T=420+(2x+2y)110=80+20(x+y)≥80+202=80+204=160(當且僅當x=y(tǒng)時取等號). 故該容器的最低總造價是160元. 10.某車間分批生產(chǎn)某種產(chǎn)品,每批的生產(chǎn)準備費用為800元.若每批生產(chǎn)x件,則平均倉儲時間為天,且每件產(chǎn)品每天的倉儲費用為1元.為使平均到每件產(chǎn)品的生產(chǎn)準備費用與倉儲費用之和最小,每批應生產(chǎn)產(chǎn)品 ( ) A.60件 B.80件 C.100件 D.120件 【答案】B 11.若對任意x>0,≤a恒成立,則a的取值范圍是 ( ) A.a(chǎn)≥ B.a(chǎn)> C.a(chǎn)< D.a(chǎn)≤ 【答案】A 【解析】:∵對任意x>0,≤a恒成立, ∴對x∈(0,+∞),a≥max, 而對x∈(0,+∞),=≤=, 當且僅當x=時等號成立,∴a≥. 12.正數(shù)a,b滿足+=1,若不等式a+b≥-x2+4x+18-m對任意實數(shù)x恒成立,則實數(shù)m的取值范圍是 ( ) A.[3,+∞) B.(-∞,3] C.(-∞,6] D.[6,+∞) 【答案】D 二、填空題 13.正數(shù)a,b滿足ab=a+b+3,則ab的取值范圍是________. 【答案】[9,+∞) 【解析】:∵a,b是正數(shù),∴ab=a+b+3≥2+3, ∴ab-2-3≥0, ∴(+1)(-3)≥0,∴≤-1(舍去)或≥3. 即ab≥9. 14.已知正數(shù)x,y滿足x+2≤λ(x+y)恒成立,則實數(shù)λ的最小值為________. 【答案】2 【解析】:依題意得x+2≤x+(x+2y)=2(x+y),即≤2(當且僅當x=2y時取等號),即的最大值為2.又λ≥,因此有λ≥2,即λ的最小值為2. 15.某公司購買一批機器投入生產(chǎn),據(jù)市場分析,每臺機器生產(chǎn)的產(chǎn)品可獲得的總利潤y(單位:萬元)與機器運轉(zhuǎn)時間x(單位:年)的關(guān)系為y=-x2+18x-25(x∈N*),則每臺機器為該公司創(chuàng)造的年平均利潤的最大值是________萬元. 【答案】8 【解析】:年平均利潤為=-x-+18 =-+18, ∵x+≥2=10, ∴=18-≤18-10=8, 當且僅當x=, 即x=5時,取等號. 16.已知點P(a,b)在函數(shù)y=上,且a>1,b>1,則aln b的最大值為________. 【答案】e 【解析】: 由點P(a,b)在函數(shù)y=上,得ab=e2,則ln a+ln b=2,又a>1,b>1,則ln a>0,ln b>0.令aln b=t,t>1,則ln t=ln aln b≤=1,當且僅當a=b=e時,取等號,所以1<t≤e,所以aln b的最大值為e. 三、解答題 17.(1)當x<時,求函數(shù)y=x+的最大值; (2)設0- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高考數(shù)學 考點分析與突破性講練 專題23 基本不等式及不等式應用 2019 年高 數(shù)學 考點 分析 突破性 專題 23 基本 不等式 應用
鏈接地址:http://weibangfood.com.cn/p-6149878.html