2019版高考數(shù)學一輪復(fù)習 第九章 計數(shù)原理與概率 第60講 離散型隨機變量及其分布列學案

上傳人:彩*** 文檔編號:104780239 上傳時間:2022-06-11 格式:DOC 頁數(shù):15 大?。?14KB
收藏 版權(quán)申訴 舉報 下載
2019版高考數(shù)學一輪復(fù)習 第九章 計數(shù)原理與概率 第60講 離散型隨機變量及其分布列學案_第1頁
第1頁 / 共15頁
2019版高考數(shù)學一輪復(fù)習 第九章 計數(shù)原理與概率 第60講 離散型隨機變量及其分布列學案_第2頁
第2頁 / 共15頁
2019版高考數(shù)學一輪復(fù)習 第九章 計數(shù)原理與概率 第60講 離散型隨機變量及其分布列學案_第3頁
第3頁 / 共15頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2019版高考數(shù)學一輪復(fù)習 第九章 計數(shù)原理與概率 第60講 離散型隨機變量及其分布列學案》由會員分享,可在線閱讀,更多相關(guān)《2019版高考數(shù)學一輪復(fù)習 第九章 計數(shù)原理與概率 第60講 離散型隨機變量及其分布列學案(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第60講 離散型隨機變量及其分布列 考綱要求 考情分析 命題趨勢 1.理解取有限個值的離散型隨機變量及其分布列的概念,了解分布列對于刻畫隨機現(xiàn)象的重要性. 2.理解超幾何分布及其導(dǎo)出過程,并能進行簡單的應(yīng)用. 2016·全國卷Ⅰ,19 2015·重慶卷,17 2015·四川卷,17 利用排列、組合知識求解離散型隨機變量的分布列,運用概率知識解決實際問題. 分值:5分 1.隨機變量 隨著試驗結(jié)果變化__而變化__的變量,常用字母X,Y,ξ,η,…表示. 2.離散型隨機變量 所有取值可以__一一列出__的隨機變量. 3.離散型隨機變量分布列的概率 若

2、離散型隨機變量X可能取的不同值為x1,x2,…,xi,…,xn,X取每一個值xi(i=1,2,…,n)的概率P(X=xi)=pi,則表 X x1 x2 … xi … xn P p1 p2 … pi … pn 稱為離散型隨機變量X的概率分布列,簡稱為X的分布列,有時也用等式__P(X=xi)=pi,i=1,2,…,n__表示X的分布列. 4.離散型概率分布列的性質(zhì) (1)__pi≥0(i=1,2,…,n)__; (2)i=1. 5.兩點分布 若隨機變量X服從兩點分布,則其分布列為 X 0 1 P __1-p__ p 其中p=__P(X=1)_

3、_稱為成功概率. 6.超幾何分布 在含有M件次品的N件產(chǎn)品中,任取n件,其中恰有X件次品,則事件{X=k}發(fā)生的概率為:P(X=k)=____(k=0,1,2,…,m),其中m=__min{M,n}__,且n≤N,M≤N,n,M,N∈N*,如果隨機變量X的分布列具有下表形式. X 0 1 … m P ____ ____ … ____ 則稱隨機變量X服從超幾何分布. 1.思維辨析(在括號內(nèi)打“√”或“×”). (1)隨機試驗所有可能的結(jié)果是明確的,并且不止一個.( √ ) (2)離散型隨機變量的所有取值有時無法一一列出.( × ) (3)離散型隨機變量的分布

4、列中pi>0(i=1,2,…,n).( × ) (4)離散型隨機變量在某一范圍內(nèi)取值的概率等于它取這個范圍內(nèi)各個值的概率之和.( √ ) 解析 (1)正確.根據(jù)隨機試驗的條件可知正確. (2)錯誤.離散型隨機變量的所有取值可以一一列出. (3)錯誤.離散型隨機變量的分布列中pi≥0(i=1,2,3,…,n). (4)正確.由離散型隨機變量的分布列的性質(zhì)可知該命題正確. 2.投擲甲、乙兩顆骰子,所得點數(shù)之和為X,那么X=4表示的事件是( C ) A.一顆是3點,一顆是1點 B.兩顆都是2點 C.甲是3點,乙是1點或甲是1點,乙是3點或兩顆都是2點 D.以上答案都不對 解析

5、甲是3點,乙是1點與甲是1點,乙是3點是試驗的兩個不同結(jié)果,故選C. 3.設(shè)隨機變量X的分布列如下. X 1 2 3 4 5 P p 則p=( C ) A.   B. C.   D. 解析 由++++p=1,得p=. 4.用X表示投擲一枚均勻的骰子獲得的點數(shù),且X的分布列為P(X=i)=(i=1,2,…,6),則擲出的點數(shù)是偶數(shù)的概率為____. 解析 概率P=P(X=2)+P(X=4)+P(X=6)=++=. 5.10件產(chǎn)品中有7件正品,3件次品,從中任取4件,則恰好取到1件次品的概率是____. 解析 從10件產(chǎn)品中任取4件共有C=210種

6、不同的取法,因為10件產(chǎn)品中有7件正品、3件次品,所以從中任取4件恰好取到1件次品共有CC=105種不同的取法,故所求的概率為P==. 一 離散型隨機變量的分布列及性質(zhì) (1)利用分布列中各概率之和為1可求參數(shù)的值,此時要注意檢驗,以保證每個概率值均為非負數(shù). (2)求隨機變量在某個范圍內(nèi)的概率時,根據(jù)分布列,將所求范圍內(nèi)各隨機變量對應(yīng)的概率相加即可,其依據(jù)是互斥事件的概率加法公式. 【例1】 設(shè)隨機變量X的分布列為P=ak(k=1,2,3,4,5). (1)求a;(2)求P;(3)求P. 解析 (1)由分布列的性質(zhì), 得P+P+P+P+P(X=1)=a+2a+3a+

7、4a+5a=1, 所以a=. (2)P=P+P+P(X=1)= 3×+4×+5×=. (3)P=P+P+P=++==. 二 離散型隨機變量分布列的求法 求離散型隨機變量X的分布列的步驟 ①理解X的意義,寫出X可能取的全部值;②求X取每個值的概率;③寫出X的分布列. 注:求離散型隨機變量的分布列的關(guān)鍵是求隨機變量所取值對應(yīng)的概率,在求解時,要注意應(yīng)用計數(shù)原理、古典概型等知識. 【例2】 端午節(jié)包粽子是我國的傳統(tǒng)習俗.設(shè)一盤中裝有10個粽子,其中豆沙粽2個,肉粽3個,白粽5個,這三種粽子的外觀完全相同.從中任意選取3個. (1)求三種粽子各取到1個的概率; (2)設(shè)X表示

8、取到的豆沙粽的個數(shù),求X的分布列. 解析 (1)令A(yù)表示事件“三種粽子各取到1個”, 則由古典概型的概率計算公式有P(A)==. (2)X能取到的所有可能值為0,1,2,且 P(X=0)==,P(X=1)==, P(X=2)==. 綜上知,X的分布列為 X 0 1 2 P 【例3】 某商店試銷某種商品20天,獲得如下數(shù)據(jù). 日銷售量/件 0 1 2 3 頻數(shù) 1 5 9 5 試銷結(jié)束后(假設(shè)該商品的日銷售量的分布規(guī)律不變),設(shè)某天開始營業(yè)時有該商品3件,當天營業(yè)結(jié)束后檢查存貨,若發(fā)現(xiàn)存量少于2件,則當天進貨補充至3件,否則不進貨,將頻率

9、視為概率. (1)求當天商店不進貨的概率; (2)記X為第二天開始營業(yè)時該商品的件數(shù),求X的分布列. 解析 (1)P(當天商店不進貨)=P(當天商品銷售量為0件)+P(當天商品銷售量為1件)=+=. (2)由題意知,X的可能取值為2,3.P(X=2)=P(當天商品銷售量為1件)==; P(X=3)=P(當天商品銷售量為0件)+P(當天商品銷售量為2件)+P(當天商品銷售量為3件)=++=. 所以X的分布列為 X 2 3 P 【例4】 甲乙兩人進行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局數(shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為,乙獲

10、勝的概率為,各局比賽結(jié)果相互獨立. (1)求甲在4局以內(nèi)(含4局)贏得比賽的概率; (2)記X為比賽決出勝負時的總局數(shù),求X的分布列. 解析 用A表示“甲在4局以內(nèi)(含4局)贏得比賽”,Ak表示“第k局甲獲勝”,Bk表示“第k局乙獲勝”. 則P(Ak)=,P(Bk)=,k=1,2,3,4,5. (1)P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4) =P(A1)P(A2)+P(B1)P(A2)P(A3)+P(A1)P(B2)P(A3)P(A4) =2+×2+××2=. (2)X的可能取值為2,3,4,5. P(X=2)=P(A1A2)+P(B1B2)=P(

11、A1)P(A2)+P(B1)P(B2)=, P(X=3)=P(B1A2A3)+P(A1B2B3) =P(B1)P(A2)P(A3)+P(A1)P(B2)P(B3)=, P(X=4)=P(A1B2A3A4)+P(B1A2B3B4) =P(A1)P(B2)P(A3)P(A4)+P(B1)P(A2)P(B3)P(B4)=, P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=. 故X的分布列為 X 2 3 4 5 P 三 超幾何分布 超幾何分布描述的是不放回抽樣問題,隨機變量為抽到的某類個體的個數(shù),超幾何分布的特征是:①考察對象分兩類;②已知各

12、類對象的個數(shù);③從中抽取若干個個體,考查某類個體數(shù)X的分布列.超幾何分布主要用于抽檢產(chǎn)品、摸不同類別的小球等概率模型,其實質(zhì)是古典概型. 【例5】 一袋中裝有10個大小相同的黑球和白球,已知從袋中任意摸出2個球,至少得到1個白球的概率是. (1)求白球的個數(shù); (2)從袋中任意摸出3個球,記得到白球的個數(shù)為X,求隨機變量X的分布列. 解析 (1)記“從袋中任意摸出2個球,至少得到1個白球”為事件A,設(shè)袋中白球的個數(shù)為x, 則P(A)=1-=,解得x=5.故白球有5個. (2)X服從超幾何分布. P(X=k)=,k=0,1,2,3. 于是可得其分布列為 X 0 1 2

13、3 P 1.設(shè)離散型隨機變量X的分布列為 X 0 1 2 3 4 P 0.2 0.1 0.1 0.3 m 求:(1)2X+1的分布列; (2)|X-1|的分布列. 解析 由分布列的性質(zhì)知:0.2+0.1+0.1+0.3+m=1,得m=0.3.首先列表為 X 0 1 2 3 4 2X+1 1 3 5 7 9 |X-1| 1 0 1 2 3 從而由上表得兩個分布列為: (1)2X+1的分布列 2X+1 1 3 5 7 9 P 0.2 0.1 0.1 0.3 0.3 (2)|X-1

14、|的分布列 |X-1| 0 1 2 3 P 0.1 0.3 0.3 0.3 2.4支圓珠筆標價分別為10元、20元、30元、40元. (1)從中任取一支,求其標價X的分布列; (2)從中任取兩支,若以Y表示取到的圓珠筆的最高標價,求Y的分布列. 解析 (1)X的可能取值分別為10,20,30,40,且取得任一支的概率相等,故X的分布列為 X 10 20 30 40 P (2)根據(jù)題意,Y的可能取值為20,30,40, 且P(Y=20)==, P(Y=30)==,P(Y=40)==. 所以Y的分布列為 Y 20 30 40

15、 P 3.(2018·湖南益陽測試)已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結(jié)束. (1)求第一次檢測出的是次品且第二次檢測出的是正品的概率; (2)已知每檢測一件產(chǎn)品需要費用100元,設(shè)X表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求X的分布列. 解析 (1)記“第一次檢測出的是次品且第二次檢測出的是正品”為事件A.P(A)==. (2)X的可能取值為200,300,400. P(X=200)==,P(X=300)==, P(X=400)=1-

16、P(X=200)-P(X=300)=1--=. 故X的分布列為 X 200 300 400 P 4.在10件產(chǎn)品中,有3件一等品,4件二等品,3件三等品,從這10件產(chǎn)品中任取3件,求: (1)取出的3件產(chǎn)品中一等品件數(shù)X的分布列; (2)取出的3件產(chǎn)品中一等品件數(shù)多于二等品件數(shù)的概率. 解析 (1)由于從10件產(chǎn)品中任取3件的結(jié)果數(shù)為C,從10件產(chǎn)品中任取3件,其中恰有k件一等品的結(jié)果數(shù)為CC,那么從10件產(chǎn)品中任取3件,其中恰有k件一等品的概率為P(X=k)=,k=0,1,2,3. 所以隨機變量X的分布列為 X 0 1 2 3 P

17、 (2)設(shè)“取出的3件產(chǎn)品中一等品件數(shù)多于二等品件數(shù)”為事件A,“恰好取出1件一等品和2件三等品”為事件A1,“恰好取出2件一等品”為事件A2,“恰好取出3件一等品”為事件A3. 由于事件A1,A2,A3彼此互斥,且A=A1∪A2∪A3, 而P(A1)==, P(A2)=P(X=2)=, P(A3)=P(X=3)=. ∴取出的3件產(chǎn)品中一等品件數(shù)多于二等品件數(shù)的概率為 P(A)=P(A1)+P(A2)+P(A3)=++=. 易錯點 隨機變量取值不全 錯因分析:弄清隨機變量的取值,正確應(yīng)用概率公式是關(guān)鍵.有時雖然弄清了隨機變量的所有取值,但對某個取值考慮不全面.避免這種

18、錯誤發(fā)生的有效方法是驗證隨機變量的概率和是否為1. 【例1】 盒子中有大小相同的球10個,其中標號為1的球3個,標號為2的球4個,標號為5的球3個.第一次從盒子中任取1個球,放回后第二次再任取1個球(假設(shè)取到每個球的可能性都相同),記第一次與第二次取得球的標號之和為ξ,求隨機變量ξ的可能取值及其分布列. 解析 由題意可得,隨機變量ξ的可能取值是2,3,4,6,7,10. P(ξ=2)=0.3×0.3=0.09, P(ξ=3)=C×0.3×0.4=0.24, P(ξ=4)=0.4×0.4=0.16, P(ξ=6)=C×0.3×0.3=0.18, P(ξ=7)=C×0.4×0.3=0

19、.24, P(ξ=10)=0.3×0.3=0.09. 故隨機變量ξ的分布列為 ξ 2 3 4 6 7 10 P 0.09 0.24 0.16 0.18 0.24 0.09 【跟蹤訓練1】 (2016·全國卷Ⅰ)某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元,在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖. 以這100臺機器更換的易損零件數(shù)的頻率代替1臺

20、機器更換的易損零件數(shù)發(fā)生的概率,記X表示2臺機器三年內(nèi)共需更換的易損零件數(shù),n表示購買2臺機器的同時購買的易損零件數(shù). (1)求X的分布列; (2)若要求P(X≤n)≥0.5,確定n的最小值; (3)以購買易損零件所需費用的期望值為決策依據(jù),在n=19與n=20之中選其一,應(yīng)選用哪個? 解析 (1)由柱狀圖并以頻率代替概率可得,一臺機器在三年內(nèi)需更換的易損零件數(shù)為8,9,10,11的概率分別為0.2,0.4,0.2,0.2.從而 P(X=16)=0.2×0.2=0.04; P(X=17)=2×0.2×0.4=0.16; P(X=18)=2×0.2×0.2+0.4×0.4=0.24

21、; P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24; P(X=20)=2×0.2×0.4+0.2×0.2=0.2; P(X=21)=2×0.2×0.2=0.08; P(X=22)=0.2×0.2=0.04. 所以X的分布列為 X 16 17 18 19 20 21 22 P 0.04 0.16 0.24 0.24 0.2 0.08 0.04 (2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值為19. (3)記Y表示2臺機器在購買易損零件上所需的費用(單位:元). 當n=19時, E(Y)=19×2

22、00×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040. 當n=20時, E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知當n=19時所需費用的期望值小于n=20時所需費用的期望值,故應(yīng)選n=19. 課時達標 第60講 [解密考綱]離散型隨機變量及其分布列在高考中一般與排列、組合及古典概型、幾何概型、二項分布及超幾何分布相結(jié)合,以實際問題為背景呈現(xiàn)在三種題型中,難度中等或較大. 一、選擇題 1.設(shè)某項試驗的成功率是失

23、敗率的2倍,用隨機變量X去描述1次試驗的成功次數(shù),則P(X=0)=( C ) A.0   B.   C.   D. 解析 設(shè)X的分布列為: X 0 1 P p 2p 即“X=0”表示試驗失敗,“X=1”表示試驗成功,設(shè)失敗率為p,則成功率為2p,∴由p+2p=1,得p=,故選C. 2.一只袋內(nèi)裝有m個白球,n-m個黑球,連續(xù)不放回地從袋中取球,直到取出黑球為止,設(shè)此時取出了X個白球,下列概率等于的是( D ) A.P(X=3)   B.P(X≥2) C.P(X≤3)   D.P(X=2) 解析 由超幾何分布知P(X=2)=. 3.設(shè)X是一個離散型隨機變量,其分布列

24、為 X -1 0 1 P 2-3q q2 則q=( C ) A.1   B.± C.-   D.+ 解析 由分布列的性質(zhì)知∴q=-. 4.隨機變量X的概率分布為P(X=n)=(n=1,2,3,4),其中a是常數(shù),則P=( D ) A.   B.   C.   D. 解析 ∵P(X=1)+P(X=2)+P(X=3)+P(X=4)=+++=1,∴a=,∴P=P(X=1)+P(X=2)=×+×=. 5.若隨機變量X的分布列為 X -2 -1 0 1 2 3 P 0.1 0.2 0.2 0.3 0.1 0.1 則當P(X

25、,實數(shù)a的取值范圍是( C ) A.(-∞,2]   B.[1,2] C.(1,2]   D.(1,2) 解析 由隨機變量X的分布列知:P(X<-1)=0.1,P(X<0)=0.3,P(X<1)=0.5,P(X<2)=0.8,則當P(X

26、+m=1?m=1-=1-=,故選C. 二、填空題 7.設(shè)隨機變量X的概率分布列為 X 1 2 3 4 P m 則P(|X-3|=1)=  . 解析 由+m++=1,解得m=,P(|X-3|=1)=P(X=2)+P(X=4)=+=. 8.由于電腦故障,使得隨機變量X的分布列中部分數(shù)據(jù)丟失(以“x,y”代替),其分布列如下. X 1 2 3 4 5 6 P 0.20 0.10 0.x5 0.10 0.1y 0.20 則丟失的兩個數(shù)據(jù)x,y依次為__2,5__. 解析 由于0.20+0.10+(0.1·x+0.05)+0.10+(0

27、.1+0.01·y)+0.20=1,得10x+y=25,又因為x,y為正整數(shù),故兩個數(shù)據(jù)依次是2,5. 9.若離散型隨機變量X的分布列為 X 0 1 P 9c2-c 3-8c 則常數(shù)c=____,P(X=1)=____. 解析 由離散型隨機變量分布列的性質(zhì)可知: 解得c=. P(X=1)=3-8×=. 三、解答題 10.設(shè)ξ為隨機變量,從棱長為1的正方體的12條棱中任取兩條:當兩條棱相交時,ξ=0;當兩條棱平行時,ξ的值為兩條棱之間的距離;當兩條棱異面時,ξ=1. (1)求概率P(ξ=0); (2)求ξ的分布列. 解析 (1)若兩條棱相交,則交點必為正方體8個頂

28、點中的1個,過任意1個頂點恰有3條棱,所以共有8C對相交棱, 因此P(ξ=0)===. (2)若兩條棱平行,則它們的距離為1或,其中距離為的共有6對, 于是P(ξ=1)=1-P(ξ=0)-P(ξ=)=1--=. 所以隨機變量ξ的分布列是 ξ 0 1 P 11.某學校的三個學生社團的人數(shù)分布如下表(每名學生只能參加一個社團). 圍棋社 舞蹈社 拳擊社 男生 5 10 28 女生 15 30 m 學校要對這三個社團的活動效果進行抽樣調(diào)查,按分層抽樣的方法從三個社團成員中抽取18人,結(jié)果拳擊社被抽出了6人. (1)求拳擊社團被抽出6人中

29、有5人是男生的概率; (2)設(shè)拳擊社團有X名女生被抽出,求X的分布列. 解析 (1)由于按分層抽樣的方法從三個社團成員中抽取18人,拳擊社被抽出了6人, ∴=,∴m=2. 設(shè)A為“拳擊社團被抽出的6人中有5人是男生”, 則P(A)==. (2)由題意可知X=0,1,2, P(X=0)==,P(X=1)==, P(X=2)===, X的分布列為 X 0 1 2 P 12.某高中共派出足球、排球、籃球三個球隊參加市學校運動會,它們獲得冠軍的概率分別為,,. (1)求該高中獲得冠軍個數(shù)X的分布列; (2)若球隊獲得冠軍,則給其所在學校加5分,否則加2分,

30、求該高中得分Y的分布列. 解析 (1)由題意知X的可能取值為0,1,2,3, 則P(X=0)=××=, P(X=1)=××+××+××=, P(X=2)=××+××+××=, P(X=3)=××=. ∴X的分布列為 X 0 1 2 3 P (2)∵得分Y=5X+2(3-X)=6+3X, ∵X的可能取值為0,1,2,3, ∴Y的可能取值為6,9,12,15,則 P(Y=6)=P(X=0)=,P(Y=9)=P(X=1)=, P(Y=12)=P(X=2)=,P(Y=15)=P(X=3)=. ∴Y的分布列為 Y 6 9 12 15 P 15

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!