2022年高中數(shù)學(xué) 第十二課時 正弦函數(shù)、余弦函數(shù)的圖象教案 蘇教版必修4

上傳人:xt****7 文檔編號:105166380 上傳時間:2022-06-11 格式:DOC 頁數(shù):2 大?。?7.02KB
收藏 版權(quán)申訴 舉報 下載
2022年高中數(shù)學(xué) 第十二課時 正弦函數(shù)、余弦函數(shù)的圖象教案 蘇教版必修4_第1頁
第1頁 / 共2頁
2022年高中數(shù)學(xué) 第十二課時 正弦函數(shù)、余弦函數(shù)的圖象教案 蘇教版必修4_第2頁
第2頁 / 共2頁

最后一頁預(yù)覽完了!喜歡就下載吧,查找使用更方便

9.9 積分

下載資源

資源描述:

《2022年高中數(shù)學(xué) 第十二課時 正弦函數(shù)、余弦函數(shù)的圖象教案 蘇教版必修4》由會員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué) 第十二課時 正弦函數(shù)、余弦函數(shù)的圖象教案 蘇教版必修4(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高中數(shù)學(xué) 第十二課時 正弦函數(shù)、余弦函數(shù)的圖象教案 蘇教版必修4 教學(xué)目標(biāo): 會用單位圓中的線段畫出正弦函數(shù)的圖象,用誘導(dǎo)公式畫出余弦函數(shù)的圖象,會用“五點法”畫正、余弦函數(shù)的圖象;培養(yǎng)學(xué)生的數(shù)形結(jié)合思想,滲透由抽象到具體思想,使學(xué)生理解動與靜的辯證關(guān)系. 教學(xué)重點: 用“五點法”畫正弦曲線、余弦曲線. 教學(xué)難點: 利用單位圓畫正弦曲線. 教學(xué)過程: Ⅰ.課題導(dǎo)入 以前,我們已經(jīng)學(xué)過一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)等等,對于各種函數(shù)我們都討論過它的圖象及性質(zhì).那么,現(xiàn)在我們正在學(xué)習(xí)的三角函數(shù)的圖象是什么樣子呢?今天,我們就來探討一下. Ⅱ.講授新課 三角函

2、數(shù)線是三角函數(shù)的一種幾何表示法,確切地說,就是用有向線段的長度來表示三角函數(shù)值的大小,方向表示三角函數(shù)的符號的一種方法. 作函數(shù)的圖象,最基本的方法是列表描點法.作三角函數(shù)的圖象,為了精確,我們借助單位圓中的三角函數(shù)線來作. 下面,我們利用單位圓中的正弦線來畫一下正弦函數(shù)的圖象. 首先,在平面內(nèi)建立一平面直角坐標(biāo)系,然后在直角坐標(biāo)系的x軸上任意取一點O1,以O1為圓心作單位圓,從⊙O1與x軸的交點A起把⊙O1分成12等份(份數(shù)宜取6的倍數(shù),份數(shù)越多,畫出的圖象越精確).過⊙O1上的各分點作x軸的垂線,可以得到對應(yīng)于0、、、、…2π等角的正弦線(例如有向線段O1B對應(yīng)于 角的正弦線),相應(yīng)

3、地,再把x軸上從0到2π這一段(2π≈6.28)分成12等份(例如,從原點起向右的第四個點,就是對應(yīng)于 角的點),把角x的正弦線向右平移,使它的起點與x軸上的點x重合(例如,把正弦線O1B向右平移,使點O1與x軸上的點 重合).再把這些正弦線的終點用平滑曲線連結(jié)起來. 這時,我們看到的這段光滑曲線就是函數(shù)y=sinx在x∈[0,2π]上的函數(shù). 因為終邊相同的角有相同的三角函數(shù)值,所以函數(shù)y=sinx在x∈[2kπ,2(k+1)π], k∈Z且k≠0上的圖象與函數(shù)y=sinx在x∈[0,2π)上的圖象的形狀完全一樣,只是位置不同,于是我們只要將函數(shù)y=sinx,x∈[0,2π)的圖

4、象向左、右平行移動(每次2個單位長度),就可以得到正弦函數(shù)y=sinx在x∈R上的圖象. 這時,我們看到的這支曲線就是正弦函數(shù)y=sinx在整個定義域上的圖象,我們也可把它稱為正弦曲線. 用這種方法來作圖象,雖然比較精確,但不太實用,我們該如何快捷地畫出正弦函數(shù)的圖象呢? 在函數(shù)y=sinx,x∈[0,2π]的圖象上,起著關(guān)鍵作用的點只有以下五個: (0,0),(,1),(π,0),(,-1),(2π,0) 事實上,描出這五個點后,函數(shù)y=sinx,x∈[0,2π]的圖象的形狀就基本上確定了.因此,在精確度要求不太高時,我們常常先找出這五個關(guān)鍵點,然后用光滑曲線將它們連結(jié)起來,就可得

5、到函數(shù)的簡圖.今后,我們將經(jīng)常使用這種近似的“五點(畫圖)法”. 下面我們看余弦函數(shù)圖象的一種畫法. 由誘導(dǎo)公式可知:y=cosx=sin(+x)=sin(x+) 看來,余弦函數(shù)y=cosx,x∈R與函數(shù)y=sin(x+),x∈R是同一個函數(shù). 而y=sin(x+),x∈R的圖象可通過將正弦曲線向左平行移動個單位長度而得到. 現(xiàn)在看到的曲線也就是余弦函數(shù)y=cosx在x∈R上的圖象,即余弦曲線. 同樣,可發(fā)現(xiàn)在函數(shù)y=cosx,x∈[0,2π]的圖象上,起著關(guān)鍵作用的點是以下五個: (0,1),(,0),(π,-1),(,0),(2π,1)與畫函數(shù)y=sinx,x∈[0,2π]的簡圖類似,通過這五個點,可以畫出函數(shù)y=cosx,x∈[0,2π]的簡圖. 下面,請同學(xué)們練習(xí)一下“五點(作圖)法” Ⅲ.課堂練習(xí) 用“五點法”分別作出y=sinx與y=cosx在x∈[0,2π]上的簡圖,并體會它們之間的關(guān)系. Ⅳ.課時小結(jié) 通過本節(jié)學(xué)習(xí),要了解如何利用正弦曲線畫出正弦函數(shù)的圖象,并在此基礎(chǔ)上由誘導(dǎo)公式畫出余弦函數(shù)的圖象,并會用“五點法”畫正弦、余弦函數(shù)的簡圖,會用這一方法畫出與正弦、余弦函數(shù)有關(guān)的某些簡單函數(shù)在長度為一個周期的閉區(qū)間上的簡圖. Ⅴ.課后作業(yè) 預(yù)習(xí):正弦函數(shù)、余弦函數(shù)分別具有哪些性質(zhì)?

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!