《(山西專(zhuān)用)2022中考數(shù)學(xué)一輪復(fù)習(xí) 第四單元 三角形滿分集訓(xùn)優(yōu)選習(xí)題》由會(huì)員分享,可在線閱讀,更多相關(guān)《(山西專(zhuān)用)2022中考數(shù)學(xué)一輪復(fù)習(xí) 第四單元 三角形滿分集訓(xùn)優(yōu)選習(xí)題(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、(山西專(zhuān)用)2022中考數(shù)學(xué)一輪復(fù)習(xí) 第四單元 三角形滿分集訓(xùn)優(yōu)選習(xí)題
一、選擇題(每小題3分,共18分)
1.下列圖形中,∠1與∠2是對(duì)頂角的是( )
2.如圖,在△ABC中,AB=AC,過(guò)點(diǎn)A作AD∥BC.若∠1=70°,則∠BAC的大小為( )
A.30° B.40°
C.50° D.70°
3.如圖,在△ABC中,邊AB的垂直平分線分別交BC、AB于點(diǎn)G、D,若△AGC的周長(zhǎng)為
31 cm,AB=20 cm,則△ABC的周長(zhǎng)=( )
A.31 cm B.41 cm
C.51 cm D.61 cm
4.如圖,在網(wǎng)格中,小正方形的邊長(zhǎng)均為1,點(diǎn)A,B,
2、C都在格點(diǎn)上,則∠ABC的正切值是( )
A.2 B. C. D.
5.平面上有△ACD與△BCE,其中AD與BE相交于P點(diǎn),如圖.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,則∠BPD的度數(shù)是( )
A.110° B.125°
C.130° D.155°
6.如圖,在△ABC中,∠ACB=90°,分別以點(diǎn)A,B為圓心,大于AB的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)M,N,作直線MN分別交AB,AC于點(diǎn)D,E,連接CD,BE,下列結(jié)論錯(cuò)誤的是( )
A.AD=CD B.BE>CD
C.∠BEC=∠BDC D.BE平分∠CBD
二、填空題
3、(每小題3分,共12分)
7.如圖,點(diǎn)P在△ABC的邊AC上,請(qǐng)你添加一個(gè)條件,使得△ABP∽△ACB,這個(gè)條件可以是 .?
8.如圖,OP平分∠AOB,∠AOP=15°,PC∥OB,PD⊥OB于點(diǎn)D,若PD=4,則PC等于 .?
9.將三個(gè)同樣大小的正方形的一個(gè)頂點(diǎn)重合放置,如圖,那么∠1= .?
10.如圖,在邊長(zhǎng)為2的菱形ABCD中,∠A=60°,點(diǎn)M是AD邊的中點(diǎn),連接MC,將菱形ABCD翻折,使點(diǎn)A落在線段CM上的點(diǎn)E處,折痕交AB于點(diǎn)N,則線段EC的長(zhǎng)為 .?
三、解答題(共70分)
11.(6分)如圖,AB∥CD,E、F分別
4、為AB、CD上的點(diǎn),且EC∥BF,連接AD,分別與EC、BF相交于點(diǎn)G、H,若AB=CD,求證:AG=DH.
12.(8分)保護(hù)視力要求人寫(xiě)字時(shí)眼睛和筆端的距離應(yīng)超過(guò)30 cm,圖1是一位同學(xué)的坐姿,把他的眼睛B,肘關(guān)節(jié)C和筆端A的位置關(guān)系抽象成圖2的△ABC,已知BC=30 cm,AC=
22 cm,∠ACB=53°,他的這種坐姿符合保護(hù)視力的要求嗎?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):sin 53°≈0.8,
cos 53°≈0.6,tan 53°≈1.3)
13.(16分)已知,在△ABC中,∠A=90°,AB=AC,點(diǎn)D為BC的中點(diǎn).
(1)如
5、圖1,若點(diǎn)E、F分別為AB、AC上的點(diǎn),且DE⊥DF,求證:BE=AF;
(2)如果點(diǎn)E、F分別為AB、CA延長(zhǎng)線上的點(diǎn),且DE⊥DF,那么BE=AF嗎?請(qǐng)利用圖2說(shuō)明理由.
14.(16分)如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點(diǎn)E、H分別在AB、AC上,已知BC=40 cm,AD=30 cm.
(1)求證:△AEH∽△ABC;
(2)求這個(gè)正方形的邊長(zhǎng)與面積.
15.(24分)如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE
6、,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;?
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說(shuō)明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫(xiě)出△PMN面積的最大值.
答案精解精析
一、選擇題
1.C 2.B 3.C 4.D 5.C 6.D
二、填空題
7.∠ABP=∠C(答案不唯一)
8.8
9.15°
10.-1
三、解答題
1
7、1.證明 ∵AB∥CD,EC∥BF,
∴四邊形BFCE是平行四邊形,
∠A=∠D,
∴∠BEC=∠BFC,BE=CF,
∴∠AEG=∠DFH,
∵AB=CD,
∴AE=DF,
∴△AEG≌△DFH,
∴AG=DH.
12.解析 他的這種坐姿不符合保護(hù)視力的要求.理由:如圖,過(guò)點(diǎn)B作BD⊥AC于D,在Rt△BDC中,sin 53°==≈0.8,解得BD=24 cm,
cos 53°=≈0.6,解得DC=18 cm,
∴AD=22-18=4 cm,
在Rt△ADB中,AB===<,
∴他的這種坐姿不符合保護(hù)視力的要求.
13.解析 (1)證明:連接AD,如圖a,∵∠
8、BAC=90°,AB=AC,
∴△ABC為等腰直角三角形,∠EBD=45°.
∵點(diǎn)D為BC的中點(diǎn),
∴AD=BC=BD,∠FAD=45°.
∵∠BDE+∠EDA=90°,
∠EDA+∠ADF=90°,
∴∠BDE=∠ADF,
在△BDE和△ADF中,
∴△BDE≌△ADF,∴BE=AF.
(2)BE=AF.理由:連接AD,如圖b,
∵∠ABD=∠CAD=45°,
∴∠EBD=∠FAD=135°.
∵∠EDB+∠BDF=90°,
∠BDF+∠FDA=90°,
∴∠EDB=∠FDA,
在△EDB與△FDA中,
∵
∴△EDB≌△FDA,
∴BE=AF.
9、
14.解析 (1)證明:∵四邊形EFGH是正方形,∴EH∥BC,
∴∠AEH=∠B,∠AHE=∠C,
∴△AEH∽△ABC.
(2)設(shè)AD與EH交于點(diǎn)M.
∵∠EFD=∠FEM=∠FDM=90°,
∴四邊形EFDM是矩形,
∴EF=DM,
設(shè)正方形EFGH的邊長(zhǎng)為x(x>0)cm,
由(1)知△AEH∽△ABC,
∴=,
∴=,
∴x=,
∴正方形EFGH的邊長(zhǎng)為 cm,面積為 cm2.
15.解析 (1)∵點(diǎn)P,N分別是CD,BC的中點(diǎn),∴PN∥BD,PN=BD,
∵點(diǎn)P,M分別是CD,DE的中點(diǎn),
∴PM∥CE,PM=CE,
∵AB=AC,AD=AE,
10、∴BD=CE,∴PM=PN,
∵PN∥BD,∴∠DPN=∠ADC,
∵PM∥CE,
∴∠DPM=∠DCA,
∵∠BAC=90°,
∴∠ADC+∠ACD=90°,
∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
∴PM⊥PN.
故答案為PM=PN;PM⊥PN.
(2)△PMN是等腰直角三角形.理由:由旋轉(zhuǎn)知,∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位線得,PN=BD,PM=CE,
∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,
11、
∴∠DPM=∠DCE,
同(1)的方法得,PN∥BD,
∴∠PNC=∠DBC,∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
∵∠BAC=90°,
∴∠ACB+∠ABC=90°,
∴∠MPN=90°,
∴△PMN是等腰直角三角形.
(3)如圖,同(2)的方法得,△PMN是等腰直角三角形,
∴當(dāng)MN最大時(shí),△PMN的面積最大,
∴DE∥BC且DE在頂點(diǎn)A的上方,
∴MN的最大值為AM+AN,
連接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,
在Rt△ABC中,AB=AC=10,AN=5,∴MNmax=2+5=7,
∴(S△PMN)max=PM2=×MN2=×(7)2=.