《云南省曲靖市麒麟區(qū)第七中學高中數學 1-1充分 必要 充要條件學案 新人教A版選修1-1》由會員分享,可在線閱讀,更多相關《云南省曲靖市麒麟區(qū)第七中學高中數學 1-1充分 必要 充要條件學案 新人教A版選修1-1(4頁珍藏版)》請在裝配圖網上搜索。
1、云南省曲靖市麒麟區(qū)第七中學高中數學 1-1充分 必要 充要條件學案 新人教A版選修1-1
【學習目標】
1.理解充分條件、必要條件、充要條件的意義.
2.結合具體命題掌握判斷充分條件、必要條件、充要條件的方法.
【學習重點】理解充分條件、必要條件、充要條件的意義.
【學習難點】掌握充分條件、必要條件、充要條件的判斷方法.
【問題導學】
回憶:命題的基本形式是 ;其逆命題是
否命題是 ;逆否命題是
新課:
知識點一:充分條件、必要條件、充要條件的概念
2、1、分析下列兩個命題:① 若,則 ② 若,則
命題①②都為 命題(真或假)
發(fā)現: ,
歸納:一般地,“若則”為真命題,是指通過推理可以得到,即可以推出,記作: 并且是的 , 是的
(充分理解必要條件:的等價命題是:,即若不成立則不成立,故是成立的必要條件,注意:成立不保證一定成立)
2、若則稱 ;即 ;
若且即那么是的 3、若A
3、是B的充分非必要條件,等價于 ;
若A是B的必要非充分條件,等價于 ;
若A是B的充要條件,等價于 ;
若A是B的充分條件,則B是A的 ;
若A是B的必要非充分條件,則B是A的 ;
若A是B的既不充分也不必要條件,等價于
知識點二:集合間的關系與充要條件
若AB,則A
4、是B的 ;
若AB,則A是B的 ;
若A=B,則A是B的 ;
若AB,且BA, 則A是B的 ;
知識點三:判斷充分條件和必要條件的方法
定義法,集合法,等價法
【典型例題】
例1、設甲、乙、丙三個命題,如果甲是乙的充分條件,丙是乙的充分非必要條件,那么丙是甲的
5、
例2、判斷是的什么條件
① A、B、C恰為一個三角形的三內角
② ③
④ ⑤ 或
⑥ ⑦
⑧ 或 (多角度分析)
例3、求證:△ABC是等邊三角形的充要條件是:,這里
是△ABC的三條邊.
【基礎題組】
1、設原命題“若則” 為真,其逆命題為假,則是的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分又不必要條件
2、設,則的一個
6、必要不充分條件是( )
A. B. C. D.
3、如果是的必要不充分條件,是的充分必要條件,是的充分不必要條件,那么是的( ?。?
A.必要不充分條件 B.充分不必要條件
C.充要條件 D.既不充分也不必要條件
4、設集合,,那么“或”是“”的( ?。?
A.充分條件但非必要條件 B.必要條件但非充分條件
C.充分必要條件 D.非充分條件,也非必要條件
5、若是的充分不必要條件,則是的( ?。?
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
6、設,,那么是的( ?。?
A.充分而不必要條件 B.必要而不充分條件
C.充要條件 D.既不充分也不必要條件
7、條件甲:的兩根,,,條件乙:且,則甲是乙的( ?。?
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
8、從“充分條件”“必要條件”中選出適當的一種填空:
(1)“有實根”是“”的_____________;
(2)“”是“”的_____________.
9、已知是的充分條件,是的充要條件,是的充分條件,是的必要條件,則是的_____________條件.
10、設集合,則” ”是的