2019-2020學年高中數(shù)學 課時作業(yè)25 簡單線性規(guī)劃的應用 北師大版必修5

上傳人:Sc****h 文檔編號:116157410 上傳時間:2022-07-05 格式:DOC 頁數(shù):11 大?。?.65MB
收藏 版權申訴 舉報 下載
2019-2020學年高中數(shù)學 課時作業(yè)25 簡單線性規(guī)劃的應用 北師大版必修5_第1頁
第1頁 / 共11頁
2019-2020學年高中數(shù)學 課時作業(yè)25 簡單線性規(guī)劃的應用 北師大版必修5_第2頁
第2頁 / 共11頁
2019-2020學年高中數(shù)學 課時作業(yè)25 簡單線性規(guī)劃的應用 北師大版必修5_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2019-2020學年高中數(shù)學 課時作業(yè)25 簡單線性規(guī)劃的應用 北師大版必修5》由會員分享,可在線閱讀,更多相關《2019-2020學年高中數(shù)學 課時作業(yè)25 簡單線性規(guī)劃的應用 北師大版必修5(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、課時作業(yè)(二十五) 1.有5輛6噸的汽車,4輛4噸的汽車,要運送最多的貨物,完成這項運輸任務的線性目標函數(shù)為(  ) A.z=6x+4y       B.z=5x+4y C.z=x+y D.z=4x+5y 答案 A 解析 設需x輛6噸汽車,y輛4噸汽車,則運輸貨物的噸數(shù)為z=6x+4y,即目標函數(shù)z=6x+4y. 2.(2015·新余高二檢測)某服裝制造商有10 m2的棉布料,10 m2的羊毛料和6 m2的絲綢料,做一條褲子需要1 m2的棉布料,2 m2的羊毛料和1 m2的絲綢料,做一條裙子需要1 m2的棉布料,1 m2的羊毛料和1 m2的絲綢料,做一條褲子的純收益是20元,一

2、條裙子的純收益是40元,為了使收益達到最大,若生產(chǎn)褲子x條,裙子y條,利潤為z,則生產(chǎn)這兩種服裝所滿足的數(shù)學關系式與目標函數(shù)分別為 (  ) A. B. C. D. 答案 A 3.某學校用800元購買A,B兩種教學用品,A種用品每件100元,B種用品每件160元,兩種用品至少各買一件,要使剩下的錢最少,A,B兩種用品應各買的件數(shù)為(  ) A.2件,4件 B.3件,3件 C.4件,2件 D.不確定 答案 B 解析 設買A種用品x件,B種用品y件,剩下的錢為z元,則 求z=800-100x-160y取得最小值時的整數(shù)解(x,y),用圖解法求得整數(shù)解為(3,3).

3、 4.在“家電下鄉(xiāng)”活動中,某廠要將100臺洗衣機運往鄰近的鄉(xiāng)鎮(zhèn).現(xiàn)有4輛甲型貨車和8輛乙型貨車可供使用.每輛甲型貨車運輸費用400元,可裝洗衣機20臺;每輛乙型貨車運輸費用300元,可裝洗衣機10臺.若每輛車至多只運一次,則該廠所花的最少運輸費用為(  ) A.2 000元 B.2 200元 C.2 400元 D.2 800元 答案 B 解析 設需使用甲型貨車x輛,乙型貨車y輛,運輸費用z元,根據(jù)題意,得線性約束條件目標函數(shù)z=400x+300y,畫圖可知,當平移直線400x+300y=0至經(jīng)過點(4,2)時,z取最小值2 200. 5.某公司有60萬元資金,計劃投資

4、甲、乙兩個項目,按要求對項目甲的投資不小于對項目乙投資的倍,且對每個項目的投資不能低于5萬元.對項目甲每投資1萬元可獲得0.4萬元的利潤,對項目乙每投資1萬元可獲得0.6萬元的利潤,該公司正確規(guī)劃投資后,在這兩個項目上共可獲得的最大利潤為(  ) A.36萬元 B.31.2萬元 C.30.4萬元 D.24萬元 答案 B 6.(2015·揭陽高二檢測)某汽車公司有兩家裝配廠,生產(chǎn)甲、乙兩種不同型的汽車,若A廠每小時可完成1輛甲型車和2輛乙型車;B廠每小時可完成3輛甲型車和1輛乙型車.今欲制造40輛甲型車和40輛乙型車,若要使所費的總工作時數(shù)最少,那么這兩家工廠工作的時間分別為( 

5、 ) A.16,8 B.15,9 C.17,7 D.14,10 答案 A 7.(2015·中山高二檢測)某廠生產(chǎn)甲、乙兩種產(chǎn)品每噸所需的煤、電和產(chǎn)值如表所示: 用煤(噸) 用電(千瓦) 產(chǎn)值(萬元) 甲產(chǎn)品 7 20 8 乙產(chǎn)品 3 50 12 但國家每天分配給該廠的煤、電有限,每天供煤至多56噸,供電至多450千瓦,則該廠最大日產(chǎn)值為(  ) A.120萬元 B.124萬元 C.130萬元 D.135萬元 答案 B 8.某農(nóng)戶計劃種植黃瓜和韭菜,種植面積不超過50畝,投入資金不超過54萬元,假設種植黃瓜和韭菜的產(chǎn)量、成本和售價如

6、下表 年產(chǎn)量/畝 年種植成本/畝 每噸售價 黃瓜 4噸 1.2萬元 0.55萬元 韭菜 6噸 0.9萬元 0.3萬元   為使一年的種植總利潤(總利潤=總銷售收入-總種植成本)最大,那么黃瓜和韭菜的種植面積(單位:畝)分別為(  ) A.50,0 B.30,20 C.20,30 D.0,50 答案 B 9.(2015·西安高二檢測)某所學校計劃招聘男教師x名,女教師y名,x和y須滿足約束條件則該校招聘的教師人數(shù)最多是________名. 答案 13 10.(2015·德州高二檢測)某公司計劃用不超過50萬元的資金投資A,B兩個項目,根據(jù)市場調查與

7、項目論證,A,B項目的最大利潤分別為投資的80%和40%,而最大的虧損額為投資的40%和10%,若要求資金的虧損額不超過8萬元,且使利潤最大,投資者應投資A項目________萬元,投資B項目________萬元. 答案 10 40 11.鐵礦石A和B的含鐵率a,冶煉每萬噸鐵礦石的CO2的排放量b及每萬噸鐵礦石的價格c如下表: a b(萬噸) c(百萬元) A 50% 1 3 B 70% 0.5 6 某冶煉廠至少要生產(chǎn)1.9(萬噸)鐵,若要求CO2的排放量不超過2(萬噸),則購買鐵礦石的最少費用為________(百萬元). 答案 15 12.一農(nóng)民有農(nóng)田2

8、畝,根據(jù)往年經(jīng)驗,若種水稻,則每畝產(chǎn)量為400千克;若種花生,則每畝產(chǎn)量為100千克.但水稻成本較高,每畝240元,而花生只需80元,且花生每千克5元,稻米每千克3元.現(xiàn)該農(nóng)民手頭有400元. (1)設該農(nóng)民種x畝水稻,y畝花生,利潤z元,請寫出約束條件及目標函數(shù); (2)問兩種作物各種多少,才能獲得最大收益? 解析 (1)約束條件為: 即 目標函數(shù)為:z=(3×400-240)x+(5×100-80)y=960x+420y. (2)作出可行域如圖所示. 把z=960x+420y變形為y=-x+,得到斜率為-,在y軸上的截距為,隨z變化的一組平行直線;當直線y=-x+經(jīng)過可行

9、域上的點B時,截距最大,即z最大. 所以解方程組得即B的坐標是(1.5,0.5),故當x=1.5,y=0.5時,zmax=960×1.5+420×0.5=1 650(元). 答:該農(nóng)民種1.5畝水稻,0.5畝花生時,能獲得最大利潤,最大利潤為1 650元. 13.某工廠用兩種不同的原料均可生產(chǎn)同一種產(chǎn)品,若采用甲種原料,每噸成本1 000元,運費500元,可得產(chǎn)品90 kg,若采用乙種原料,每噸成本1 500元,運費400元,可得產(chǎn)品100 kg.如果每月原料的總成本不超過6 000元,運費不超過2 000元,那么工廠每月最多可生產(chǎn)多少產(chǎn)品? 解析 將已知數(shù)據(jù)列成下表: 每噸

10、甲原料 每噸乙原料 費用限制 成本(元) 1 000 1 500 6 000 運費(元) 500 400 2 000 產(chǎn)品(kg) 90 100 設此工廠每月甲乙兩種原料各用x(t),y(t),生產(chǎn)z(kg)產(chǎn)品,則即z=90x+100y. 作出以上不等式組表示的平面區(qū)域,即可行域. 作直線l:90x+100y=0,即9x+10y=0. 把l向右上方移動到位置l1時,直線經(jīng)過可行域上的點M,且與原點距離最大,此時z=90x+100y取得最大值. ∴zmax=90×+100×=440. 因此工廠最多每天生產(chǎn)440 kg產(chǎn)品. 某營養(yǎng)師要為某個兒

11、童預訂午餐和晚餐.已知一個單位的午餐含12個單位的碳水化合物6個單位的蛋白質和6個單位的維生素C;一個單位的晚餐含8個單位的碳水化合物,6個單位的蛋白質和10個單位的維生素C.另外,該兒童這兩餐需要的營養(yǎng)中至少含64個單位的碳水化合物,42個單位的蛋白質和54個單位的維生素C.如果一個單位的午餐、晚餐的費用分別是2.5元和4元,那么要滿足上述的營養(yǎng)要求,并且花費最少,應當為該兒童分別預訂多少個單位的午餐和晚餐? 解析 方法一 設需要預訂滿足要求的午餐和晚餐分別為x個單位和y個單位,所花的費用為z元,則依題意得:z=2.5x+4y,且x,y滿足 即 z在可行域的四個頂點A(9,0),B

12、(4,3),C(2,5),D(0,8)處的值分別是zA=2.5×9+4×0=22.5, zB=2.5×4十4×3=22, zC=2.5×2+4×5=25, zD=2.5×0+4×8=32. 比較之,zB最小,因此,應當為該兒童預訂4個單位的午餐和3個單位的晚餐,就可滿足要求. 方法二 設需要預訂滿足要求的午餐和晚餐分別為x個單位和y個單位,所花的費用為z元,則依題意得:z=2.5x+4y,且x,y滿足 即 讓目標函數(shù)表示的直線2.5x+4y=z在可行域上平移,由此可知z=2.5x+4y在B(4,3)處取得最小值. 因此,應當為該兒童預訂4個單位的午餐和3個單位的晚餐,就可滿足要

13、求. 1.(2013·北京)設a,b,c∈R,且a>b,則(  ) A.a(chǎn)c>bc          B.< C.a(chǎn)2>b2 D.a(chǎn)3>b3 答案 D 解析 A項中,若c小于等于0則不成立;B項中,若a為正數(shù)b為負數(shù)則不成立;C項中,若a,b均為負數(shù)則不成立.故選D項. 2.(2013·安徽)已知一元二次不等式f(x)<0的解集為{x|x<-1或x>},則f(10x)>0的解集為(  ) A.{x|x<-1或x>-lg2} B.{x|-1-lg2} D.{x|x<-lg2} 答案 D 解析 由題意知-1<10x<,所以x

14、=-lg2,故選D項. 3.(2014·安徽)x,y滿足約束條件若z=y(tǒng)-ax取得最大值的最優(yōu)解不唯一,則實數(shù)a的值為(  ) A.或-1 B.2或 C.2或1 D.2或-1 答案 D 解析 作出約束條件滿足的可行域,根據(jù)z=y(tǒng)-ax取得最大值的最優(yōu)解不唯一,通過數(shù)形結合分析求解.如圖,由y=ax+z知z的幾何意義是直線在y軸上的截距,故當a>0時,要使z=y(tǒng)-ax取得最大值的最優(yōu)解不唯一,則a=2;當a<0時,要使z=y(tǒng)-ax取得最大值的最優(yōu)解不唯一,則a=-1. 4.(2014·山東)已知x,y滿足約束條件當目標函數(shù)z=ax+by(a>0,b>0)在該約束條件下取到最小

15、值2時,a2+b2的最小值為(  ) A.5 B.4 C. D.2 答案 B 解析 方法一:不等式組表示的平面區(qū)域如圖所示,根據(jù)目標函數(shù)的幾何意義可知,目標函數(shù)在點A(2,1)處取得最小值,故2a+b=2,兩端平方得4a2+b2+4ab=20,又4ab=2×a×2b≤a2+4b2, 所以20≤4a2+b2+a2+4b2=5(a2+b2),所以a2+b2≥4,即a2+b2的最小值為4,當且僅當a=2b,即b=,a=時等號成立. 方法二:把2a+b=2看作平面直角坐標系aOb中的直線,則a2+b2的幾何意義是直線上的點與坐標原點距離的平方,顯然a2+b2的最小值是坐標原點到直線

16、2a+b=2距離的平方,即=4. 5.(2013·湖北)某旅行社租用A,B兩種型號的客車安排900名客人旅行,A,B兩種車輛的載客量分別為36人和60人,租金分別為1 600元/輛和2 400元/輛,旅行社要求租車總數(shù)不超過21輛,且B型車不多于A型車7輛,則租金最少為(  ) A.31 200元 B.36 000元 C.36 800元 D.38 400元 答案 C 解析 設需A,B型車分別為x,y輛(x,y∈N),則x,y需滿足設租金為z,則z=1 600x+2 400y,畫出可行域如圖陰影部分所示,根據(jù)線性規(guī)劃中截距問題,可求得最優(yōu)解為x=5,y=12,此時z最小等于36

17、 800,故選C項. 6.(2012·浙江)若正數(shù)x,y滿足x+3y=5xy,則3x+4y的最小值是(  ) A. B. C.5 D.6 答案 C 解析 ∵x+3y=5xy,∴+=1. ∴3x+4y=(3x+4y)×1=(3x+4y)(+)=+++≥+2=5, 當且僅當=,即x=1,y=時等號成立. 7.(2014·湖南)若變量x,y滿足約束條件且z=2x+y的最小值為-6,則k=________. 答案 -2 解析 畫出可行域(圖略),由題意可知不等式組表示的區(qū)域為一三角形,平移參照直線2x+y=0,可知在點(k,k)處z=2x+y取得最小值,故zmin=2k

18、+k=-6,解得k=-2. 8.(2014·上海)若實數(shù)x,y滿足xy=1,則x2+2y2的最小值為________. 答案 2 解析 ∵x2+2y2≥2=2xy=2,當且僅當x=y(tǒng)時取“=”,∴x2+2y2的最小值為2. 9.(2013·四川)已知函數(shù)f(x)=4x+(x>0,a>0)在x=3時取得最小值,則a=________. 答案 36 解析 由基本不等式可得4x+≥2=4,當且僅當4x=即x=時等號成立,∴=3,a=36. 10.(2013·江蘇)已知f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=x2-4x,則不等式f(x)>x的解集用區(qū)間表示為________.

19、 答案 (-5,0)∪(5,+∞) 解析 ∵函數(shù)f(x)為奇函數(shù),且x>0時,f(x)=x2-4x,則f(x)=∴原不等式等價于或 由此可解得x>5或-5

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!