《2020屆高考數(shù)學(xué)總復(fù)習(xí) 課時跟蹤練(六十)變量間的相關(guān)關(guān)系、統(tǒng)計案例 文(含解析)新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2020屆高考數(shù)學(xué)總復(fù)習(xí) 課時跟蹤練(六十)變量間的相關(guān)關(guān)系、統(tǒng)計案例 文(含解析)新人教A版(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、課時跟蹤練(六十)
A組 基礎(chǔ)鞏固
1.對變量x,y有觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點圖(1);對變量u,v有觀測數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點圖(2).由這兩個散點圖可以判斷( )
A.變量x與y正相關(guān),u與v正相關(guān)
B.變量x與y正相關(guān),u與v負(fù)相關(guān)
C.變量x與y負(fù)相關(guān),u與v正相關(guān)
D.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)
解析:由題圖(1)可知y隨x的增大而減小,各點整體呈下降趨勢,故變量x與y負(fù)相關(guān),由題圖(2)知v隨u的增大而增大,各點整體呈上升趨勢,故變量v與u正相關(guān).
答案:C
2.(2019·廣東七校聯(lián)考)某單位為
2、了了解用電量y(度)與氣溫x(℃)之間的關(guān)系,隨機統(tǒng)計了某4天的用電量與當(dāng)天氣溫,并制作了對照表:
氣溫x(℃)
18
13
10
-1
用電量y(度)
24
34
38
64
由表中數(shù)據(jù)得回歸直線方程=x+中的=-2,預(yù)測當(dāng)氣溫為-4 ℃時,用電量度數(shù)為( )
A.68 B.67
C.65 D.64
解析:回歸直線過點(,),根據(jù)題意知==10,==40,將(10,40)代入=-2x+中,解得=60,則=-2x+60,當(dāng)x=-4時,=(-2)×(-4)+60=68,即當(dāng)氣溫為-4 ℃時,用電量約為68度.
答案:A
3.(2019·石家莊一模)下列
3、說法錯誤的是( )
A.回歸直線過樣本點的中心(,)
B.兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的絕對值就越接近于1
C.對分類變量X與Y,隨機變量K2的觀測值k越大,則判斷“X與Y有關(guān)系”的把握程度越小
D.在回歸直線方程=0.2x+0.8中,當(dāng)解釋變量x每增加1個單位時,預(yù)報變量平均增加0.2個單位
解析:根據(jù)相關(guān)定義分析知A,B,D正確;C中對分類變量X與Y的隨機變量K2的觀測值k來說,k越大,判斷“X與Y有關(guān)系”的把握程度越大,故C錯誤.
答案:C
4.(2019·張家界模擬)已知變量x,y之間的線性回歸方程為=-0.7x+10.3,且變量x,y之間的一組相關(guān)數(shù)據(jù)如下
4、表所示,則下列說法錯誤的是( )
x
6
8
10
12
y
6
m
3
2
A.變量x,y之間呈負(fù)相關(guān)關(guān)系
B.可以預(yù)測,當(dāng)x=20時,=-3.7
C.m=4
D.該回歸線直線必過點(9,4)
解析:由-0.7<0,得變量x,y之間呈負(fù)相關(guān)關(guān)系,故A正確;當(dāng)x=20時,=-0.7×20+10.3=-3.7,故B正確;由表格數(shù)據(jù)可知=×(6+8+10+12)=9,=(6+m+3+2)=,則=-0.7×9+10.3,
解得m=5,故C錯誤;
由m=5,得==4,所以該回歸直線必過點(9,4),故D正確.
答案:C
5.通過隨機詢問110名性別不同的學(xué)生
5、是否愛好某項運動,得到如下的列聯(lián)表:
分類
男
女
總計
愛好
40
20
60
不愛好
20
30
50
總 計
60
50
110
由K2=算得,
K2=≈7.8.
附表:
P(K2≥k0)
0.050
0.010
0.001
k0
3.841
6.635
10.828
參照附表,得到的正確結(jié)論是( )
A.有99%以上的把握認(rèn)為“愛好該項運動與性別有關(guān)”
B.有99%以上的把握認(rèn)為“愛好該項運動與性別無關(guān)”
C.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項運動與性別有關(guān)”
D.在犯錯誤的概率不超過0.1%的前提下,
6、認(rèn)為“愛好該項運動與性別無關(guān)”
解析:根據(jù)獨立性檢驗的定義,由K2≈7.8>6.635,可知我們在犯錯誤的概率不超過0.01的前提下,即有99%以上的把握認(rèn)為“愛好該項運動與性別有關(guān).”
答案:A
6.某車間為規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了5次試驗.根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸方程=0.67x+54.9.
零件數(shù)x(個)
10
20
30
40
50
加工時間y(min)
62
75
81
89
現(xiàn)發(fā)現(xiàn)表中有一個數(shù)據(jù)看不清,請你推斷出該數(shù)據(jù)的值為________.
解析:由=30,得=0.67×30+54.9=
7、75.
設(shè)表中的“模糊數(shù)字”為a,
則62+a+75+81+89=75×5,即a=68.
答案:68
7.某醫(yī)療研究所為了檢驗?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未使用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計算得K2≈3.918,經(jīng)查臨界值表知P(K2≥3.841)≈0.05.則下列結(jié)論中,正確結(jié)論的序號是________.
①有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”;
②若某人未使用該血清,那么他在一年中有95%的可能性得感冒;
③這種血清預(yù)防感冒的有效率為95%;
④這種血清預(yù)防感
8、冒的有效率為5%.
解析:K2≈3.918>3.841,而P(K2≥3.814)≈0.05,所以有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”.要注意我們檢驗的是假設(shè)是否成立和該血清預(yù)防感冒的有效率是沒有關(guān)系的,不是同一個問題,不要混淆.
答案:①
8.在2019年1月15日那天,某市物價部門對本市的5家商場的某商品的一天銷售量及其價格進行調(diào)查,5家商場的售價x元和銷售量y件之間的一組數(shù)據(jù)如下表所示:
價格x
9
9.5
m
10.5
11
銷售量y
11
n
8
6
5
由散點圖可知,銷售量y與價格x之間有較強的線性相關(guān)關(guān)系,其線性回歸方程是=-3.2
9、x+40,且m+n=20,則其中的n=________.
解析:==8+,==6+,回歸直線一定經(jīng)過樣本點中心(,),即6+=-3.2+40,即3.2m+n=42.又因為m+n=20,即解得故n=10.
答案:10
9.(2019·惠州模擬)某市春節(jié)期間7家超市廣告費支出xi(萬元)和銷售額yi(萬元),數(shù)據(jù)如下表:
超 市
A
B
C
D
E
F
G
廣告費支出xi
1
2
4
6
11
13
19
銷售額yi
19
32
40
44
52
53
54
(1)若用線性回歸模型擬合y與x的關(guān)系,求y與x的線性回歸方程;
(2)若用二次函
10、數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程:=-0.17x2+5x+20,經(jīng)計算,二次函數(shù)回歸模型和線性回歸模型的R2分別約為0.93和0.75,請用R2說明選擇哪個回歸模型更合適,并用此模型預(yù)測A超市廣告費支出3 萬元時的銷售額.
解:(1)===1.7,
所以=-=28.4,
故y關(guān)于x的線性回歸方程是=1.7x+28.4.
(2)因為0.75<0.93,所以二次函數(shù)回歸模型更合適.
當(dāng)x=3時,=33.47.
故選擇二次函數(shù)回歸模型更合適,并且用此模型預(yù)測A超市廣告費支出3 萬元時的銷售額為33.47 萬元.
10.(2019·江門模擬)為探索課堂教學(xué)改革,江門某中學(xué)數(shù)學(xué)
11、老師用“傳統(tǒng)教學(xué)”和“導(dǎo)學(xué)案”兩種教學(xué)方式分別在甲、乙兩個平行班進行教學(xué)實驗.為了解教學(xué)效果,期末考試后,分別從兩個班級各隨機抽取20名學(xué)生的成績進行統(tǒng)計,得到如下莖葉圖.記成績不低于70分者為“成績優(yōu)良”.
(1)請大致判斷哪種教學(xué)方式的教學(xué)效果更佳,并說明理由;
(2)構(gòu)造一個教學(xué)方式與成績優(yōu)良的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”.
獨立性檢驗臨界值表:
P(K2≥k0)
0.10
0.05
0.025
0.010
k0
2.706
3.841
5.024
6.635
解:(1)“導(dǎo)學(xué)案”教學(xué)方式的
12、教學(xué)效果更佳.
理由1:乙班樣本數(shù)學(xué)成績大多在70分以上,甲班樣本數(shù)學(xué)成績70分以下的明顯更多.
理由2:甲班樣本數(shù)學(xué)成績的平均分為70.2;乙班樣本數(shù)學(xué)成績的平均分為79.05.
理由3:甲班樣本數(shù)學(xué)成績的中位數(shù)為=70;乙班樣本數(shù)學(xué)成績的中位數(shù)為=77.5
(2)2×2列聯(lián)表如下:
分類
甲班
乙班
總計
成績優(yōu)良
10
16
26
成績不優(yōu)良
10
4
14
總計
20
20
40
由上表可得K2=≈3.956>3.841,
所以能在犯錯誤的概率不超過0.05的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”.
B組 素養(yǎng)提升
11.(2019·肇
13、慶模擬)已知x與y之間的一組數(shù)據(jù):
x
1
2
3
4
y
0.5
3.2
4.8
7.5
若y關(guān)于x的線性回歸方程為=x+,則的值為( )
A.1.25 B.-1.25
C.1.65 D.-1.65
解析:由表中數(shù)據(jù)得=2.5,=4, xi2=12+22+32+42=30, xi yi=51.3,所以===2.26,=-=4-2.26×2.5=-1.65,故選D.
答案:D
12.下列說法錯誤的是 ( )
A.自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關(guān)系叫做相關(guān)關(guān)系
B.在線性回歸分析中,相關(guān)系數(shù)r的值越大,變量間的相關(guān)性
14、越強
C.在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D.在回歸分析中,R2為0.98的模型比R2為0.80的模型擬合的效果好
解析:根據(jù)相關(guān)關(guān)系的概念知A正確;當(dāng)r>0時,r越大,相關(guān)性越強,當(dāng)r<0時,r越大,相關(guān)性越弱,故B不正確;對于一組數(shù)據(jù)擬合程度好壞的評價,一是殘差點分布的帶狀區(qū)域越窄,擬合效果越好;二是R2越大,擬合效果越好,所以R2為0.98的模型比R2為0.80的模型擬合的效果好,C,D正確,故選B.
答案:B
13.(2019·青島模擬)針對時下的“韓劇熱”,某校團委對“學(xué)生性別和喜歡韓劇是否有關(guān)”作了一次調(diào)查,其中女生人數(shù)是男生人數(shù)的,男
15、生喜歡韓劇的人數(shù)占男生人數(shù)的,女生喜歡韓劇的人數(shù)占女生人數(shù)的.若有95%的把握認(rèn)為是否喜歡韓劇和性別有關(guān),則男生至少有________人.
P(K2≥k0)
0.050
0.010
0.001
k0
3.841
6.635
10.828
解析:設(shè)男生人數(shù)為x,由題意可得列聯(lián)表如下:
分類
喜歡韓劇
不喜歡韓劇
總計
男生
x
女生
總計
x
若有95%的把握認(rèn)為是否喜歡韓劇和性別有關(guān),
則k>3.841,
即k==>3.841.
解得x>10.243.
因為,為整數(shù),所以若有95%的把握認(rèn)為是否喜歡韓劇和性別有關(guān)
16、,則男生至少有12人.
答案:12
14.(2017·全國卷Ⅱ)海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:
(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān);
分類
箱產(chǎn)量<50 kg
箱產(chǎn)量≥50 kg
舊養(yǎng)殖法
新養(yǎng)殖法
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.
附:
K2=.
解:(1)舊養(yǎng)殖法的
17、箱產(chǎn)量低于50 kg的頻率為
(0.012+0.014+0.024+0.034+0.040)×5=0.62.
因此,事件A的概率估計值為0.62.
(2)根據(jù)箱產(chǎn)量的頻率分布直方圖得列聯(lián)表:
分類
箱產(chǎn)量<50 kg
箱產(chǎn)量≥50 kg
舊養(yǎng)殖法
62
38
新養(yǎng)殖法
34
66
K2=≈15.705.
由于15.705>6.635,故有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān).
(3)箱產(chǎn)量的頻率分布直方圖表明:新養(yǎng)殖法的箱產(chǎn)量平均值(或中位數(shù))在50 kg到55 kg之間,舊養(yǎng)殖法的箱產(chǎn)量平均值(或中位數(shù))在45 kg到50 kg之間,且新養(yǎng)殖法的箱產(chǎn)量分布集中程度較舊養(yǎng)殖法的箱產(chǎn)量分布集中程度高,因此,可以認(rèn)為新養(yǎng)殖法的箱產(chǎn)量較高且穩(wěn)定,從而新養(yǎng)殖法優(yōu)于舊養(yǎng)殖法.
9