2020屆高考數(shù)學(xué)總復(fù)習(xí) 課時(shí)跟蹤練(六十)變量間的相關(guān)關(guān)系、統(tǒng)計(jì)案例 文(含解析)新人教A版
-
資源ID:116500495
資源大?。?span id="uiot0r2" class="font-tahoma">2.55MB
全文頁(yè)數(shù):9頁(yè)
- 資源格式: DOC
下載積分:22積分
快捷下載

會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
2020屆高考數(shù)學(xué)總復(fù)習(xí) 課時(shí)跟蹤練(六十)變量間的相關(guān)關(guān)系、統(tǒng)計(jì)案例 文(含解析)新人教A版
課時(shí)跟蹤練(六十)
A組 基礎(chǔ)鞏固
1.對(duì)變量x,y有觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點(diǎn)圖(1);對(duì)變量u,v有觀測(cè)數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點(diǎn)圖(2).由這兩個(gè)散點(diǎn)圖可以判斷( )
A.變量x與y正相關(guān),u與v正相關(guān)
B.變量x與y正相關(guān),u與v負(fù)相關(guān)
C.變量x與y負(fù)相關(guān),u與v正相關(guān)
D.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)
解析:由題圖(1)可知y隨x的增大而減小,各點(diǎn)整體呈下降趨勢(shì),故變量x與y負(fù)相關(guān),由題圖(2)知v隨u的增大而增大,各點(diǎn)整體呈上升趨勢(shì),故變量v與u正相關(guān).
答案:C
2.(2019·廣東七校聯(lián)考)某單位為了了解用電量y(度)與氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4天的用電量與當(dāng)天氣溫,并制作了對(duì)照表:
氣溫x(℃)
18
13
10
-1
用電量y(度)
24
34
38
64
由表中數(shù)據(jù)得回歸直線方程=x+中的=-2,預(yù)測(cè)當(dāng)氣溫為-4 ℃時(shí),用電量度數(shù)為( )
A.68 B.67
C.65 D.64
解析:回歸直線過(guò)點(diǎn)(,),根據(jù)題意知==10,==40,將(10,40)代入=-2x+中,解得=60,則=-2x+60,當(dāng)x=-4時(shí),=(-2)×(-4)+60=68,即當(dāng)氣溫為-4 ℃時(shí),用電量約為68度.
答案:A
3.(2019·石家莊一模)下列說(shuō)法錯(cuò)誤的是( )
A.回歸直線過(guò)樣本點(diǎn)的中心(,)
B.兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1
C.對(duì)分類(lèi)變量X與Y,隨機(jī)變量K2的觀測(cè)值k越大,則判斷“X與Y有關(guān)系”的把握程度越小
D.在回歸直線方程=0.2x+0.8中,當(dāng)解釋變量x每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位
解析:根據(jù)相關(guān)定義分析知A,B,D正確;C中對(duì)分類(lèi)變量X與Y的隨機(jī)變量K2的觀測(cè)值k來(lái)說(shuō),k越大,判斷“X與Y有關(guān)系”的把握程度越大,故C錯(cuò)誤.
答案:C
4.(2019·張家界模擬)已知變量x,y之間的線性回歸方程為=-0.7x+10.3,且變量x,y之間的一組相關(guān)數(shù)據(jù)如下表所示,則下列說(shuō)法錯(cuò)誤的是( )
x
6
8
10
12
y
6
m
3
2
A.變量x,y之間呈負(fù)相關(guān)關(guān)系
B.可以預(yù)測(cè),當(dāng)x=20時(shí),=-3.7
C.m=4
D.該回歸線直線必過(guò)點(diǎn)(9,4)
解析:由-0.7<0,得變量x,y之間呈負(fù)相關(guān)關(guān)系,故A正確;當(dāng)x=20時(shí),=-0.7×20+10.3=-3.7,故B正確;由表格數(shù)據(jù)可知=×(6+8+10+12)=9,=(6+m+3+2)=,則=-0.7×9+10.3,
解得m=5,故C錯(cuò)誤;
由m=5,得==4,所以該回歸直線必過(guò)點(diǎn)(9,4),故D正確.
答案:C
5.通過(guò)隨機(jī)詢問(wèn)110名性別不同的學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
分類(lèi)
男
女
總計(jì)
愛(ài)好
40
20
60
不愛(ài)好
20
30
50
總 計(jì)
60
50
110
由K2=算得,
K2=≈7.8.
附表:
P(K2≥k0)
0.050
0.010
0.001
k0
3.841
6.635
10.828
參照附表,得到的正確結(jié)論是( )
A.有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
解析:根據(jù)獨(dú)立性檢驗(yàn)的定義,由K2≈7.8>6.635,可知我們?cè)诜稿e(cuò)誤的概率不超過(guò)0.01的前提下,即有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān).”
答案:A
6.某車(chē)間為規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn).根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸方程=0.67x+54.9.
零件數(shù)x(個(gè))
10
20
30
40
50
加工時(shí)間y(min)
62
75
81
89
現(xiàn)發(fā)現(xiàn)表中有一個(gè)數(shù)據(jù)看不清,請(qǐng)你推斷出該數(shù)據(jù)的值為_(kāi)_______.
解析:由=30,得=0.67×30+54.9=75.
設(shè)表中的“模糊數(shù)字”為a,
則62+a+75+81+89=75×5,即a=68.
答案:68
7.某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未使用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計(jì)算得K2≈3.918,經(jīng)查臨界值表知P(K2≥3.841)≈0.05.則下列結(jié)論中,正確結(jié)論的序號(hào)是________.
①有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”;
②若某人未使用該血清,那么他在一年中有95%的可能性得感冒;
③這種血清預(yù)防感冒的有效率為95%;
④這種血清預(yù)防感冒的有效率為5%.
解析:K2≈3.918>3.841,而P(K2≥3.814)≈0.05,所以有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”.要注意我們檢驗(yàn)的是假設(shè)是否成立和該血清預(yù)防感冒的有效率是沒(méi)有關(guān)系的,不是同一個(gè)問(wèn)題,不要混淆.
答案:①
8.在2019年1月15日那天,某市物價(jià)部門(mén)對(duì)本市的5家商場(chǎng)的某商品的一天銷(xiāo)售量及其價(jià)格進(jìn)行調(diào)查,5家商場(chǎng)的售價(jià)x元和銷(xiāo)售量y件之間的一組數(shù)據(jù)如下表所示:
價(jià)格x
9
9.5
m
10.5
11
銷(xiāo)售量y
11
n
8
6
5
由散點(diǎn)圖可知,銷(xiāo)售量y與價(jià)格x之間有較強(qiáng)的線性相關(guān)關(guān)系,其線性回歸方程是=-3.2x+40,且m+n=20,則其中的n=________.
解析:==8+,==6+,回歸直線一定經(jīng)過(guò)樣本點(diǎn)中心(,),即6+=-3.2+40,即3.2m+n=42.又因?yàn)閙+n=20,即解得故n=10.
答案:10
9.(2019·惠州模擬)某市春節(jié)期間7家超市廣告費(fèi)支出xi(萬(wàn)元)和銷(xiāo)售額yi(萬(wàn)元),數(shù)據(jù)如下表:
超 市
A
B
C
D
E
F
G
廣告費(fèi)支出xi
1
2
4
6
11
13
19
銷(xiāo)售額yi
19
32
40
44
52
53
54
(1)若用線性回歸模型擬合y與x的關(guān)系,求y與x的線性回歸方程;
(2)若用二次函數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程:=-0.17x2+5x+20,經(jīng)計(jì)算,二次函數(shù)回歸模型和線性回歸模型的R2分別約為0.93和0.75,請(qǐng)用R2說(shuō)明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)A超市廣告費(fèi)支出3 萬(wàn)元時(shí)的銷(xiāo)售額.
解:(1)===1.7,
所以=-=28.4,
故y關(guān)于x的線性回歸方程是=1.7x+28.4.
(2)因?yàn)?.75<0.93,所以二次函數(shù)回歸模型更合適.
當(dāng)x=3時(shí),=33.47.
故選擇二次函數(shù)回歸模型更合適,并且用此模型預(yù)測(cè)A超市廣告費(fèi)支出3 萬(wàn)元時(shí)的銷(xiāo)售額為33.47 萬(wàn)元.
10.(2019·江門(mén)模擬)為探索課堂教學(xué)改革,江門(mén)某中學(xué)數(shù)學(xué)老師用“傳統(tǒng)教學(xué)”和“導(dǎo)學(xué)案”兩種教學(xué)方式分別在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,分別從兩個(gè)班級(jí)各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),得到如下莖葉圖.記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.
(1)請(qǐng)大致判斷哪種教學(xué)方式的教學(xué)效果更佳,并說(shuō)明理由;
(2)構(gòu)造一個(gè)教學(xué)方式與成績(jī)優(yōu)良的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”.
獨(dú)立性檢驗(yàn)臨界值表:
P(K2≥k0)
0.10
0.05
0.025
0.010
k0
2.706
3.841
5.024
6.635
解:(1)“導(dǎo)學(xué)案”教學(xué)方式的教學(xué)效果更佳.
理由1:乙班樣本數(shù)學(xué)成績(jī)大多在70分以上,甲班樣本數(shù)學(xué)成績(jī)70分以下的明顯更多.
理由2:甲班樣本數(shù)學(xué)成績(jī)的平均分為70.2;乙班樣本數(shù)學(xué)成績(jī)的平均分為79.05.
理由3:甲班樣本數(shù)學(xué)成績(jī)的中位數(shù)為=70;乙班樣本數(shù)學(xué)成績(jī)的中位數(shù)為=77.5
(2)2×2列聯(lián)表如下:
分類(lèi)
甲班
乙班
總計(jì)
成績(jī)優(yōu)良
10
16
26
成績(jī)不優(yōu)良
10
4
14
總計(jì)
20
20
40
由上表可得K2=≈3.956>3.841,
所以能在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”.
B組 素養(yǎng)提升
11.(2019·肇慶模擬)已知x與y之間的一組數(shù)據(jù):
x
1
2
3
4
y
0.5
3.2
4.8
7.5
若y關(guān)于x的線性回歸方程為=x+,則的值為( )
A.1.25 B.-1.25
C.1.65 D.-1.65
解析:由表中數(shù)據(jù)得=2.5,=4, xi2=12+22+32+42=30, xi yi=51.3,所以===2.26,=-=4-2.26×2.5=-1.65,故選D.
答案:D
12.下列說(shuō)法錯(cuò)誤的是 ( )
A.自變量取值一定時(shí),因變量的取值帶有一定隨機(jī)性的兩個(gè)變量之間的關(guān)系叫做相關(guān)關(guān)系
B.在線性回歸分析中,相關(guān)系數(shù)r的值越大,變量間的相關(guān)性越強(qiáng)
C.在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D.在回歸分析中,R2為0.98的模型比R2為0.80的模型擬合的效果好
解析:根據(jù)相關(guān)關(guān)系的概念知A正確;當(dāng)r>0時(shí),r越大,相關(guān)性越強(qiáng),當(dāng)r<0時(shí),r越大,相關(guān)性越弱,故B不正確;對(duì)于一組數(shù)據(jù)擬合程度好壞的評(píng)價(jià),一是殘差點(diǎn)分布的帶狀區(qū)域越窄,擬合效果越好;二是R2越大,擬合效果越好,所以R2為0.98的模型比R2為0.80的模型擬合的效果好,C,D正確,故選B.
答案:B
13.(2019·青島模擬)針對(duì)時(shí)下的“韓劇熱”,某校團(tuán)委對(duì)“學(xué)生性別和喜歡韓劇是否有關(guān)”作了一次調(diào)查,其中女生人數(shù)是男生人數(shù)的,男生喜歡韓劇的人數(shù)占男生人數(shù)的,女生喜歡韓劇的人數(shù)占女生人數(shù)的.若有95%的把握認(rèn)為是否喜歡韓劇和性別有關(guān),則男生至少有________人.
P(K2≥k0)
0.050
0.010
0.001
k0
3.841
6.635
10.828
解析:設(shè)男生人數(shù)為x,由題意可得列聯(lián)表如下:
分類(lèi)
喜歡韓劇
不喜歡韓劇
總計(jì)
男生
x
女生
總計(jì)
x
若有95%的把握認(rèn)為是否喜歡韓劇和性別有關(guān),
則k>3.841,
即k==>3.841.
解得x>10.243.
因?yàn)?,為整?shù),所以若有95%的把握認(rèn)為是否喜歡韓劇和性別有關(guān),則男生至少有12人.
答案:12
14.(2017·全國(guó)卷Ⅱ)海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:
(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計(jì)A的概率;
(2)填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān);
分類(lèi)
箱產(chǎn)量<50 kg
箱產(chǎn)量≥50 kg
舊養(yǎng)殖法
新養(yǎng)殖法
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對(duì)這兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.
附:
K2=.
解:(1)舊養(yǎng)殖法的箱產(chǎn)量低于50 kg的頻率為
(0.012+0.014+0.024+0.034+0.040)×5=0.62.
因此,事件A的概率估計(jì)值為0.62.
(2)根據(jù)箱產(chǎn)量的頻率分布直方圖得列聯(lián)表:
分類(lèi)
箱產(chǎn)量<50 kg
箱產(chǎn)量≥50 kg
舊養(yǎng)殖法
62
38
新養(yǎng)殖法
34
66
K2=≈15.705.
由于15.705>6.635,故有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān).
(3)箱產(chǎn)量的頻率分布直方圖表明:新養(yǎng)殖法的箱產(chǎn)量平均值(或中位數(shù))在50 kg到55 kg之間,舊養(yǎng)殖法的箱產(chǎn)量平均值(或中位數(shù))在45 kg到50 kg之間,且新養(yǎng)殖法的箱產(chǎn)量分布集中程度較舊養(yǎng)殖法的箱產(chǎn)量分布集中程度高,因此,可以認(rèn)為新養(yǎng)殖法的箱產(chǎn)量較高且穩(wěn)定,從而新養(yǎng)殖法優(yōu)于舊養(yǎng)殖法.
9