喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:1064457796 或 1304139763】
==============================================喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:1064457796 或 1304139763】
==============================================
浙 江 理 工 大 學(xué) 本 科 畢 業(yè) 設(shè) 計 ( 論 文 ) 題 目 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 學(xué) 院 機(jī)械與自動控制學(xué)院 專業(yè)班級 09 機(jī)械設(shè)計制造及其自動化(4)班 姓 名 陳偉杰 學(xué) 號 B09300405 指導(dǎo)教師 李紅軍 系 主 任 胡明 學(xué)院院長 胡旭東 二一三年五月十二日 浙 江 理 工 大 學(xué) 機(jī)械與自動控制學(xué)院 畢業(yè)設(shè)計誠信說明 我謹(jǐn)在此保證:本人所做的畢業(yè)設(shè)計,凡引用他人的研究成果 均已在參考文獻(xiàn)或注釋中列出。設(shè)計說明書與圖紙均由本人獨立完 成,沒有抄襲、剽竊他人已經(jīng)發(fā)表或未發(fā)表的研究成果行為。如出 現(xiàn)以上違反知識產(chǎn)權(quán)的情況,本人愿意承擔(dān)相應(yīng)的責(zé)任。 聲明人(簽名): 2013 年 5 月 12 日 2 摘 要 攪拌摩擦焊技術(shù)是 90 年代發(fā)展起來的、自發(fā)明到工業(yè)應(yīng)用時間跨度最短和 發(fā)展最快的一項新型固相連接新技術(shù),公認(rèn)為是最有前途和最適合航空材料以 及結(jié)構(gòu)件制造的工藝方法之一。攪拌摩擦焊(FSW)是一個相對較新的固態(tài)焊接 過程。這種連接技術(shù)具有節(jié)能,高效,環(huán)保,用途廣泛的特點。特別是,它可 以用于高強(qiáng)度航天鋁合金和其他金屬的合金,這些合金是很難通過常規(guī)焊接熔 焊。 FSW 被認(rèn)為是金屬連接在十年的發(fā)展中最有標(biāo)志性的成果。 6 本文設(shè)計出的雙攪拌軸摩擦焊焊機(jī),總功率約 3 千瓦,適合于普通厚度的 鋁及其合金的工藝試驗試件的焊接,攪拌摩擦頭轉(zhuǎn)速約 6000r/min,焊接速度 為 500600mm/min,最大加工焊縫厚度 15mm,焊縫長度 500mm。文中介紹了攪 拌摩擦焊焊接技術(shù)的基本原理和特點,概要地介紹了攪拌摩擦焊的技術(shù)優(yōu)勢、 研究現(xiàn)狀、工業(yè)應(yīng)用和發(fā)展前景。針對工藝試驗試件攪拌摩擦焊機(jī),主要設(shè)計、 計算和校核了設(shè)備各主要部分,均能夠滿足試驗用焊機(jī)的要求。 本機(jī)器由于采用雙攪拌頭,因此相對于一般的攪拌摩擦焊焊機(jī)效率更高。 相對于一般的攪拌摩擦焊焊機(jī),該機(jī)器也非常的經(jīng)濟(jì)和容易操作。 關(guān)鍵詞:雙攪拌軸摩擦焊;固相焊接;鋁合金焊接;焊機(jī)設(shè)計 Abstract Friction stir welding (FSW) was firstly used in the 1990s, which is swiftest in development and is shortest in time from being invented to being applied, it is also treated as one of the technology that have a bright future and the most suitable for aviation and component manufacture.Friction stir welding (FSW) is a relatively new solid-state joining process. This joining technique is energy efficient, environment friendly, and versatile. In particular, it can be used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding. FSW is considered to be the most significant development in metal joining in a decade. This task is to sign a machine used in laboratory. Its power is about three kilowatt, rotation rate approximately is 6000r/min, and welding speed is from 500 to 600mm/min. It can be apply to welding the aluminum and aluminum alloys. In addition, the welding thickness cant exceed 15mm and length 500mm. In this paper, the basal principle and features of FSW is introduced, and the priority, prospect and application are also expounded. Importantly, main parts of the FSW machine was designed and calculated, the calculation results shows that the FSW machine designed in the paper can accord with the demand of the testing in laboratory. The advantage of this machine is that it is more efficient than the normal FSW machine because it has a twin-stir.Compared with other machine,it is also very cheap and easy-to-use. Key words:Twin-stir Friction welding;Solid phase welding;Aluminum alloys welding;Application prospect;Welding machine design 目 錄 摘 要 Abstract 第 1 章 緒論 .1 1.1 攪拌摩擦焊簡介 .1 1.2 國內(nèi)外研究現(xiàn)狀及發(fā)展趨勢 .2 1.2.1 攪拌摩擦焊技術(shù)發(fā)展歷史及研究成果 .2 1.2.2 國內(nèi)攪拌軸摩擦焊技術(shù)發(fā)展發(fā)展應(yīng)用 .3 1.2.3 攪拌摩擦焊中雙攪拌軸摩擦焊技術(shù)目前的應(yīng)用情況和前景 .5 1.3 本次設(shè)計的內(nèi)容和意義 .6 第 2 章 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 .7 2.1 焊機(jī)的總體設(shè)計以及規(guī)劃 .7 2.2 各部件設(shè)計 .8 2.2.1 攪拌頭及夾具設(shè)計 .8 2.2.2 攪拌系統(tǒng)功率計算 .9 2.2.3 攪拌系統(tǒng)傳動齒輪設(shè)計 .11 2.2.4 攪拌軸的設(shè)計 .15 2.2.5 攪拌系統(tǒng) V 帶設(shè)計 .20 2.2.6X-Y 工作臺設(shè)計 .26 2.2.7 傳動絲杠設(shè)計 .27 2.2.8 減速齒輪的設(shè)計 .30 2.2.9 液壓缸選擇 .33 第 3 章 AUTOCAD 與 PRO/E 軟件簡介 .34 3.1 軟件簡介 .34 3.2 三維模型 .35 第 4 章 總結(jié)與展望 .37 參考文獻(xiàn) .38 致 謝 .39 浙江理工大學(xué)本科畢業(yè)設(shè)計(論文) 1 第 1 章 緒論 1.1 攪拌摩擦焊簡介 1991 年攪拌摩擦焊(Friction stir WeldingFSW)由英國焊接研究所 (The Welding lnstirate-TWl)發(fā)明,這項杰出的焊接技術(shù)一步一步地為世界制 造技術(shù)的進(jìn)步做出了巨大的貢獻(xiàn)。 自 1991 年攪拌摩擦焊(Friction stir WeldingFSW)被發(fā)明到現(xiàn)在,該項 技術(shù)已經(jīng)在國內(nèi)外的眾多領(lǐng)域出現(xiàn)它的身影。如今,攪拌摩擦焊焊已經(jīng)在諸多 制造領(lǐng)域(船舶、軌道列車、航天、航空、汽車、兵器、電子電力等)達(dá)到規(guī) ?;?、工業(yè)化的應(yīng)用水平。如在船舶制造領(lǐng)域,在 1996 年攪拌摩擦焊就在挪威 MARINE 公司成功地應(yīng)用在鋁臺金快速艦船的甲板、側(cè)板等結(jié)構(gòu)件的流水線制造。 在軌道車輛制造領(lǐng)域,日本 HITACHI 公司首先于 1997 年將攪拌摩擦焊技術(shù)應(yīng)用 于列車車體的快速低成本制造。成功實現(xiàn)了大壁板鋁合金型材的工業(yè)化制 造在世界宇航制造領(lǐng)域攪拌摩擦焊已經(jīng)成功代替熔焊實現(xiàn)了大型空間運載 工具如運載火箭和航天飛機(jī)等的大型高強(qiáng)鋁合金燃料貯箱的制造,波音公司的 DELTA II 型和 Iv 型火箭已經(jīng)全部實現(xiàn)了攪拌摩擦焊制造 t 并于 1999 年首次成 功發(fā)射升空。2000 年世界汽車工業(yè),如美國 TOWER 汽車公司等就利用攪拌摩擦 焊實現(xiàn)了汽車懸掛支架、輕合金車輪、防撞緩沖器、發(fā)動機(jī)安裝支架以及鋁合 金車身的焊接。2002 年 8 月,美國月蝕航空公司利用 FSW 技術(shù)研制出了全攪拌 摩擦焊輕型商用飛機(jī),并且首次試飛成功 7。 至2004年9月,全世界約有130家各個行業(yè)的公司和大學(xué)、研究機(jī)構(gòu)獲得了 英國焊接研究所授權(quán)的攪拌摩擦焊非獨占性專利許可。英國、美國、法國、德 國、瑞典、日本和中國等先后獲得了該專利的使用權(quán)。至今為止我國先后已經(jīng) 有二十多家單位。獲得了該項專利的使用權(quán) 8。 雙攪拌軸摩擦焊縫技術(shù)作為攪拌摩擦焊技術(shù)的一種,它的最大特點就是可 以提高生產(chǎn)效率。同時,它也可以使得焊縫區(qū)域更大,焊接質(zhì)量更高。目前存 在的雙攪拌軸一般采用兩個轉(zhuǎn)動相反的攪拌頭同時進(jìn)行焊接。 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 2 在不久的將來,攪拌摩擦焊技術(shù)將會一直以任何一種焊接方法無法比擬的 速度發(fā)展,在更多的領(lǐng)域發(fā)揮著它的作用。 1.2 國內(nèi)外研究現(xiàn)狀及發(fā)展趨勢 1.2.1 攪拌摩擦焊技術(shù)發(fā)展歷史及研究成果 攪拌摩擦焊在其發(fā)明初期主要解決厚度1.2毫米的鋁合金板材焊接問題; 1996年,用FSW技術(shù)解決了612毫米的鋁、鎂、銅合金的連接1997年實現(xiàn)了 12-25毫米厚鋁合金板的攪拌摩擦焊并且在宇航結(jié)構(gòu)件上得到應(yīng)用。1999年攪 拌摩擦焊可以焊接50毫米厚的銅合金及75毫米厚度的鋁合金零件和產(chǎn)品。2004 年,英國焊接研究所已經(jīng)能夠單道單面實現(xiàn)100毫米厚鋁合金板材的攪拌摩擦焊。 迄今,在材料的厚度上,單道焊可以實現(xiàn)厚度為0.8100mm鋁合金材料的焊接: 雙道焊可以焊接180mm厚的對接板材。最近,又開發(fā)了可以連接0.4mm鋁板的微 型攪拌摩擦焊技術(shù) 9。 攪拌摩擦作為一種優(yōu)選焊接技術(shù),已經(jīng)在從技術(shù)研究向高層次的工程化和 工業(yè)化應(yīng)用階段發(fā)展。就拿國外的例子來說:在美國的宇航制造工業(yè)、北歐的 船舶制造工業(yè)、日本的高速列車制造等制造領(lǐng)域 10。總之?dāng)嚢枘Σ梁敢呀?jīng)廣泛 地涉及到了在船舶制造工業(yè)、航空航天工業(yè)、軌道交通及陸路交通工業(yè)、汽車 工業(yè)以及兵器、建筑、電力、能源、家電等工業(yè)。 攪拌摩擦在今年來取得的成就主要可以從以下幾方面來體現(xiàn): (1)攪拌摩擦焊在船舶制造工業(yè)上的應(yīng)用 目前攪拌摩擦焊在船用鋁合金的焊接方面研究應(yīng)用較多,幾乎可以焊接 所有系列的鋁合金材料,另外,攪拌摩擦焊也可以實現(xiàn)鋁合金與銅合金、鋁合 金與鎂合金等不同材料的焊接。攪拌摩擦焊與普通摩擦焊相比,因不受軸類零 件的限制,可焊接直焊縫、角焊縫。傳統(tǒng)焊接工藝焊接鋁合金時要求對表面進(jìn) 行去除氧化膜處理,并要求在48 h內(nèi)進(jìn)行焊接,而攪拌摩擦焊工藝只要在焊前 去除油污即可,并對裝配要求不高。因此,攪拌摩擦焊是船用鋁合金結(jié)構(gòu)首選 的連接技術(shù)。 浙江理工大學(xué)本科畢業(yè)設(shè)計(論文) 3 (2)攪拌摩擦焊在航天航空工業(yè)上的應(yīng)用 以英國焊接研究所、波音、空客以及美國月蝕公司為代表的攪拌摩擦焊技 術(shù)開發(fā)和應(yīng)用的先鋒已經(jīng)取得了豐碩的成果。近期的研究結(jié)果表明攪拌摩擦焊 可以在飛機(jī)機(jī)翼結(jié)構(gòu)、翼盒結(jié)構(gòu)、機(jī)身結(jié)構(gòu)、艙門結(jié)構(gòu)、裙翼結(jié)構(gòu)、機(jī)艙氣密 隔板以及貨物裝卸結(jié)構(gòu)等方面得到應(yīng)用 11。 (3)攪拌摩擦焊在高速列車鋁合金焊接的應(yīng)用 在攪拌摩擦焊出現(xiàn)后,攪拌摩擦焊由于是一種無需外加焊接材料的焊接方 法,因此沒有熔化焊接時選擇焊接材料的困難,也節(jié)省了焊材費用。更重要的 是沒有熔化焊接凝固時的一次結(jié)晶過程,克服了焊接高強(qiáng)鋁合金時的結(jié)晶裂紋、 氣孔和夾雜傾向,不會產(chǎn)生焊縫塌陷問題,也不會形成焊縫鑄造組織和低強(qiáng)區(qū)。 因此攪拌摩擦取代了先前的熔化焊,成為焊接高速列車時優(yōu)先選擇的焊接方法。 (4)攪拌摩擦焊在其他領(lǐng)域的應(yīng)用 攪拌摩擦焊除了上述3個領(lǐng)域外,還在軌道交通及陸路交通工業(yè)、汽車工業(yè) 在兵器、建筑、電力、能源、家電等工業(yè)中的應(yīng)用也越來越廣泛。而且都取得 了或多或少的成就。 1.2.2 國內(nèi)攪拌軸摩擦焊技術(shù)發(fā)展發(fā)展應(yīng)用 2002 年,北京航空制造工程研究所與英國焊接研究所正式簽署攪拌摩擦 焊專利許可協(xié)議,并在技術(shù)合作的基礎(chǔ)上成立了中國攪拌摩擦焊中心。中國攪 拌摩擦焊中心的成立標(biāo)志著攪拌摩擦焊技術(shù)正式登陸中國。中國攪拌摩擦焊中 心全權(quán)代表英國焊接研究所,發(fā)售和管理中國地區(qū)(包括香港、澳門和臺灣)的 攪拌摩擦焊技術(shù)專利許可,從此為攪拌摩擦焊技術(shù)在中國地區(qū)的發(fā)展、推廣和 工業(yè)化應(yīng)用打開了大門 12。 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 4 圖 1-1 采用攪拌摩擦焊焊接的鋁合金材壁機(jī) 圖 1-2 攪拌摩擦加工技術(shù)的發(fā)展 自攪拌摩擦焊進(jìn)入國內(nèi)后,較快的運用于我國工業(yè)上的許多領(lǐng)域(船 舶制造行業(yè)、航天制造工業(yè)、軌道交通行業(yè)等) 。 攪拌摩擦焊在國內(nèi)的應(yīng)用現(xiàn)狀,主要通過船舶制造行業(yè)、航天制造工 業(yè)兩方面來介紹。首先在船舶制造行業(yè),2006 年 4 月,我國設(shè)計制造了國內(nèi)第 一臺用于大型船用型材料拼焊的攪拌摩擦焊設(shè)備,此后,中國攪拌摩擦焊中心 大力發(fā)展鋁合金型材壁板的攪拌摩擦焊制造。其次,攪拌摩擦焊在航天制造工 業(yè)也發(fā)揮著重大的作用。目前,國內(nèi)對于 2000 系列、7000 系列以及鋁鋰合金 的材料制成的太空交通運載工具都優(yōu)先采用攪拌摩擦焊。中國攪拌摩擦焊中心 于十五期間重點對航天運載火箭攪拌摩擦焊開展了系統(tǒng)的科研攻關(guān),國內(nèi) 的航天制造工業(yè)企業(yè)也積極采用了攪拌摩擦焊技術(shù)。 除卻上述的兩個領(lǐng)域外, 攪拌摩擦焊在國內(nèi)還廣泛應(yīng)用于汽車制造業(yè)、軌道交通行業(yè)、電子電力能源行 業(yè)。 上圖 1-2 為攪拌摩擦焊在國內(nèi)的發(fā)展趨勢。隨著攪拌摩擦焊研究、技 術(shù)開發(fā)與應(yīng)用推廣的不斷深入,基于攪拌摩擦的基本原理形成了材料鏈接、材 料改姓、材料成行等多種材料加工方法。 總之,在中國,攪拌摩擦焊的研究、開發(fā)和推廣應(yīng)用才剛剛起步,在 市場化的環(huán)境下,通過引進(jìn)、消化、吸收和技術(shù)創(chuàng)新,攪拌摩擦得到了快速發(fā) 浙江理工大學(xué)本科畢業(yè)設(shè)計(論文) 5 展,尤其在航空、航天等領(lǐng)域、在國家政策和項目的支持下,攪拌摩擦焊必將 在我國其他工業(yè)領(lǐng)域得到較快的推廣。 1.2.3 攪拌摩擦焊中雙攪拌軸摩擦焊技術(shù)目前的應(yīng)用情況和前景 (1)雙攪拌軸摩擦焊技術(shù)的工作原理 在提及雙攪拌軸摩擦焊縫技術(shù)的工作原理前,我們先講講攪拌摩擦焊的 工作原理:攪拌摩擦焊過程中,一個柱形帶特殊軸肩和針凸的攪拌頭旋轉(zhuǎn)著緩 慢插入被焊接工件,攪拌頭和被焊接材料之間的摩擦剪切阻力產(chǎn)生了摩擦熱, 使攪拌頭鄰近區(qū)域的材料熱塑化(焊接溫度一般不會達(dá)到和超過被焊接材料的熔 點),當(dāng)攪拌頭旋轉(zhuǎn)著向前移動時,熱塑化的金屬材料從攪拌頭的前沿向后沿轉(zhuǎn) 移,并且在攪拌頭軸肩與工件表層摩擦產(chǎn)熱和鍛壓共同作用下,形成致密固相 連接 6。 相對于攪拌摩擦焊的工作原理,雙攪拌摩擦焊縫為采用兩個轉(zhuǎn)動相反的 攪拌頭同時進(jìn)行焊接,由于兩個攪拌頭轉(zhuǎn)動方向相反,產(chǎn)生的工作扭矩因相互 抵消而減弱,焊接過程中采用較小的側(cè)向裝夾力就能實現(xiàn)可靠的連接。在雙攪 拌頭復(fù)雜的機(jī)械力和摩擦熱的作用下,塑性金屬的流動、焊接溫度場、應(yīng)力應(yīng) 變場都將受到影響,這會對焊件性能產(chǎn)生很大的影響。 雖然兩者看起來是十分的相似,無非是多了一個攪拌軸,但是雙攪拌軸 摩擦焊相對于攪拌摩擦焊有以下優(yōu)點:(a)可以得到比攪拌摩擦焊更寬的焊縫 區(qū)域;(b)焊接質(zhì)量更高;(c)兩個攪拌頭同時焊接可以產(chǎn)生更多的熱量, 該方法可以運用于鋼及其他高溫合金攪拌摩擦焊中;(d)可以確保在較小的扭 矩下實現(xiàn)材料的可靠連接, (e)生產(chǎn)效率更高。 目前雙攪拌軸摩擦焊有以下幾種:平行并列式雙頭(Parallel Twin-stir) 攪拌摩擦焊、前后交錯排列式雙頭(Staggered Twin-stir)攪拌摩擦焊、前后一 字排列式雙頭(Tandem Twin-stir)攪拌摩擦焊。 (2)雙攪拌軸摩擦焊技術(shù)取得得成就 TWI采用雙攪拌軸進(jìn)行了雙頭攪拌摩擦焊焊接,試驗中得出了在6mm厚 6082-T6鋁合金一字排列式雙頭攪拌摩擦焊搭接接頭中,無論前進(jìn)側(cè)還是后退側(cè) 的焊縫區(qū)域殘留氧化物均有所減少,前后交錯排列式雙頭攪拌摩擦焊3mm厚 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 6 5083-H111鋁合金搭接接頭的金相分析表明,焊接區(qū)域尺寸可達(dá)板厚度的4.3倍。 在一系列的試驗后,事實證明了雙攪拌軸摩擦焊的優(yōu)點遠(yuǎn)遠(yuǎn)大于其不足之 處。多頭系統(tǒng)可以確保在較小的扭矩下實現(xiàn)材料的可靠連接。采用 前后交錯排 列式雙頭攪拌摩擦焊工藝,用于材料加工和搭接焊具有獨特優(yōu)勢,而且可以在 更大的對接間隙下實現(xiàn)對接接頭的可靠連接 7。 由此,在接下來的幾年內(nèi),雙攪拌軸摩擦焊技術(shù)將會得到越來越廣泛的應(yīng) 用于各個領(lǐng)域。 1.3 本次設(shè)計的內(nèi)容和意義 通過對相關(guān)資料、文獻(xiàn)的查找,獲得相關(guān)資料,了解雙攪拌摩擦焊焊接原 理及相關(guān)工藝,了解其的應(yīng)用范圍,了解雙攪拌摩擦焊在焊接中的優(yōu)勢,了解 雙攪拌軸摩擦焊的研究現(xiàn)狀和在工業(yè)中的應(yīng)用,以及攪拌摩擦焊的發(fā)展前景。 參照已有的雙攪拌軸摩擦焊技術(shù)設(shè)計相關(guān)資料,設(shè)計一臺能焊接焊縫厚度為 15mm,焊縫長度為 500mm 的雙攪拌軸摩擦焊實驗用焊機(jī)。在寫設(shè)計說明書的過 程中,要求對關(guān)鍵部位的設(shè)計寫得比較詳細(xì)、具體,并校核該實驗用焊機(jī)的各 主要部分。 浙江理工大學(xué)本科畢業(yè)設(shè)計(論文) 7 第 2 章 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 本章講述雙攪拌軸攪拌摩擦焊焊機(jī)的重要部分的設(shè)計計算過程。主要包括 以下幾方面:焊機(jī)的總體設(shè)計、攪拌系統(tǒng)的設(shè)計(主要講雙攪拌軸的設(shè)計以及 攪拌系統(tǒng)的傳動系統(tǒng)) 、伺服系統(tǒng)的設(shè)計(主要為工作臺的設(shè)計) 。 此攪拌摩擦焊焊機(jī),攪拌摩擦頭轉(zhuǎn)速約 6000r/min,焊接速度 500 600mm/min,最大加工焊縫厚度 15mm,焊縫長度 500mm,總功率約 4000 瓦左右。 此機(jī)器主要使用于普通的鋁及其合金,該焊機(jī)由于是雙軸的,可以雙件同 時加工,大大提高了生產(chǎn)效率。 2.1 焊機(jī)的總體設(shè)計以及規(guī)劃 此雙攪拌軸摩擦焊縫焊機(jī)由于為雙軸,所以采取雙件生產(chǎn)。為了使得該機(jī) 器更加經(jīng)濟(jì)使用,所以采用一般的 A3 鋼焊接結(jié)構(gòu)。以下是此焊機(jī)的一些整體結(jié) 構(gòu)的規(guī)劃,首先工作臺平面約離地面高越 1300mm,焊機(jī)總高度約 1750mm(適合 于工作人員的操作)總長度約 1400mm,工作臺面長度約 1000mm,寬度約 800mm,工作臺上下移動約 80mm。機(jī)頭高度約為 200mm,攪拌軸中心距機(jī)體約 500mm。工作臺箱體總長約 1000mm,高度約 400mm??紤]到及其的中提美觀,將 伺服系統(tǒng)的傳動部分放入工作臺的箱體內(nèi)。同理,液壓推動系統(tǒng)也將放于工作 臺的箱體內(nèi),便于液壓推動過程中將工作臺垂直向上推動。為了便于該系統(tǒng)的 維修和檢測,在起前方開一個天窗便于維修時的操作。電氣控制部分將放于及 其的左后下方(此部分不再本次設(shè)計范圍內(nèi)) 。攪拌系統(tǒng)的電機(jī)放在電機(jī)座上, 然后再將電機(jī)座固定在機(jī)體上,調(diào)整電機(jī)座在機(jī)體上的位置就可以調(diào)整 V 帶輪 中心距。為了方便觀察,在集體后方開一個觀察窗口,便于機(jī)器的維修和檢測。 工作臺箱體正面的左方將放置一個控制臺,操作起來很方便。以上便是本臺機(jī) 器的整體布局的規(guī)劃。 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 8 2.2 各部件設(shè)計 2.2.1 攪拌頭及夾具設(shè)計 攪拌頭是攪拌摩擦焊技術(shù)的關(guān)鍵,由特殊形狀的攪拌焊針和軸肩組成,軸 肩直徑大于攪拌焊針直徑。攪拌焊針用具有良好耐高溫力學(xué)和物理特性的抗摩 損材料制造,并進(jìn)行表面處理。 對于不同厚度的板所用的攪拌摩擦頭不同,方便攪拌頭的更換,夾持部分 采用螺紋聯(lián)接,夾持部分為 M12,長度為 L=15mm,焊針直徑 D=310mm,焊針 做成特殊的螺旋狀,加大了焊針與工件的接觸面積,同時也有利于被焊金屬的 攪動,如圖 2-1 所示。軸肩半徑為焊針直徑的三倍 17,肩部直徑為 D=9 30mm,軸肩采用如圖 2-2 所示的圖案,有利于軸肩與塑化材料緊密地結(jié)合在一 起,這樣也提高了軸肩與焊件表面的接觸面積,同時也提高了焊接時的閉合性, 從而可以防止塑化的材料在攪拌頭旋轉(zhuǎn)時噴射出去。各型號攪拌摩擦頭的參數(shù) 見表 2-1。 圖 2-1 焊針示意圖 圖 2-2 軸肩示意圖 表 2-1 攪拌摩擦頭參數(shù)及焊縫截面積 板厚(mm) 焊針直徑 (mm) 焊針長度 (mm) 軸肩直徑 d(mm) 角度(度) 焊縫斷面積 mm2 15 8 14 24 8 240 10 6 9 18 6 120 5 5 45 15 4 50 3 3 28 9 2 18 浙江理工大學(xué)本科畢業(yè)設(shè)計(論文) 9 攪拌頭夾具用于聯(lián)接攪拌頭和攪拌軸,其具體結(jié)構(gòu)如圖 2-3 所示。 圖 2-3 攪拌頭夾具 2.2.2 攪拌系統(tǒng)功率計算 查資料得到鋁合金在焊接時的需要的最高溫升為 600,本機(jī)器主要設(shè)計 成適合于 15mm 一下的,焊縫截面積約為 240mm2,焊速約為 500mm/min,由于熱 傳遞和熱量損失,設(shè)能量利用率約為 50%,則單位時間內(nèi)焊縫溫升部分體積為: 2x240 x500=240000mm3 (由于本機(jī)器為雙軸,則需要將截面面積加倍) ,能量計 算公式為 18 (2-1)VTCE 式中:C比熱容(J/kg K) T溫度變化值() V體積(m 3) 密度(kg/m 3) 效率 E能量(J) 查得鋁的各項參數(shù)如下 23 =2700Kg/m 3,C=904.3J/KgK 由式(2-1)單位時間內(nèi)需要能量為 min/895.7%027102460.99 KJE 由于該機(jī)器為雙軸,則功率為: WP.685. 選用伺服電機(jī) SM-150-230-20LFB(額定轉(zhuǎn)速 2000r/min,長度 L=60mm,額 定扭矩 2.3NB) 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 10 攪拌摩擦焊焊機(jī)輸入工件的總功率為 16 (2-2))(4510 22rFnN 式中:N輸入工件總的熱功率(J) n攪拌摩擦頭的轉(zhuǎn)速(r/min) 摩擦系數(shù) F工件上壓力(N) r0、r 1焊頭軸肩和焊針的半徑(mm) 因為單位時間內(nèi)輸入工件的能量與總功率相等,在單位時間內(nèi)則有 (2-3)NE 查得鋁與鋼的摩擦系數(shù)為 0.1718 ,由式(2-2) 、 (2-3)得)142(5)287952Fn F=84.7N 則兩個攪拌頭向前移動阻力為 NF4.1阻 由此可以得出對于不同板厚的材料在焊接時的壓力和焊接速度,見表 2- 2。 表 2-2 不同板厚在焊接時的壓力和焊速 板厚 mm 焊縫截面積 mm2 壓力 N 焊速 mm/min 15 240 84.7 500 10 120 84.7 1000 5 50 60 1500 3 18 60 2000 2.2.3 攪拌系統(tǒng)傳動齒輪設(shè)計 傳遞功率 ,轉(zhuǎn)速 , (為了方便設(shè)計和選材,把雙KWP9.2min/60rn 攪拌頭的傳動齒輪設(shè)計成傳動比為 1 的三個齒輪) ,則齒數(shù)比 。1齒 1u 浙江理工大學(xué)本科畢業(yè)設(shè)計(論文) 11 1選擇齒輪材料 為了便于制造,采用軟齒面齒輪,查表得,大齒輪采用 45 鋼正火處理, 170210HBS,小齒輪采用 45 鋼調(diào)質(zhì)處理,217255HBS。 2按齒面接觸強(qiáng)度設(shè)計 一對鋼制外嚙合齒輪設(shè)計公式為 (2-4))(1)67(321 mKTuddH (1)計算小齒輪傳遞的轉(zhuǎn)矩 )(461509.215.9105.966 NnPT (2)選擇齒輪齒數(shù) ,則實際傳動比為8z齒i 傳動比誤差為 0%1i (3)轉(zhuǎn)速不高,功率不大,選擇齒輪精度為 8 級 (4)載荷平穩(wěn),對稱布局,軸的鋼度較大,查表 2-4 取 K=1.5 表 2-4 載荷綜合系數(shù) K 工作機(jī) 均勻平穩(wěn) 輕微振動 中等振動 結(jié)構(gòu)布局 對稱 非對稱 對稱 非對稱 對稱 非對稱 均勻平穩(wěn) 1.21.3 1.21.5 1.51.6 1.51.9 1.81.9 1.92.2 輕微振動 1.31.4 1.41.7 1.61.8 1.72 1.92.1 22.4 原 動 機(jī) 中等振動 1.51.6 1.61.9 1.92.1 1.92.2 2.12.3 2.22.6 表 2-5 齒寬系數(shù) 齒面硬度 齒輪相對于軸承的位置 軟齒面 硬齒面 對稱 0.81.4 0.40.9 非對稱布置 0.61.2 0.30.6 (5)查表 2-5 取齒寬系數(shù) 1d 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 12 (6)確定許用接觸應(yīng)力 查得 2/380minNH 查表 2-6 得 5.1iS 表 2-6 最小安全系數(shù) SHmin和 SHmin 齒輪傳動裝置的重要性 SHmin SHmin 一般 1 1 齒輪損壞會引起嚴(yán)重后果 1.25 1.5 對于長期工作的齒輪, H可按下式計算 (2-5)minS 由式(2-5)得 2/30425.18NH (7)計算齒輪分度圓直徑 由式(2-4)得 md268.3145.)36871(2 (8)計算模數(shù) 6.082.3zdm 查表 2-7 取 m=1.5。 表 2-7 漸開線圓柱齒輪標(biāo)準(zhǔn)模數(shù)(GB135787) mm 第一系列 0.1 0.12 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.8 1 1.25 1.5 2 2.5 3 4 5 6 8 10 12 16 20 25 32 40 50 第二系列 0.35 0.7 0.9 1.75 2.25 2.75 3.5 4.5 5.5 7 9 14 18 浙江理工大學(xué)本科畢業(yè)設(shè)計(論文) 13 (9)計算齒輪主要尺寸及圓周速度 表 2-8 傳遞動力的齒輪精度(公差組)等級的選擇與應(yīng)用 圓周速度(m/s) 圓柱齒輪 錐齒輪 精度等級 直齒 斜齒 直齒 斜齒 應(yīng)用 6 級 15 30 12 20 高速重載齒輪傳動 7 級 10 15 8 10 高速中載或中速重載的齒輪傳動 8 級 6 10 4 7 一般機(jī)械中對精度無特殊要求的齒輪 9 級 2 4 1.5 3 低速或?qū)纫蟮偷凝X輪 不妨取分度圓半徑 d=48mm Z=D/m=96/1.5=64 中心距 mzma96)4(25.1)(21 齒輪寬度 db8 圓周速度 smnV/07.1460160 查表 2-8 可知能用 6 級精并選用 1 號二硫化鉬鋰基脂進(jìn)行潤滑。 3校核齒根彎曲強(qiáng)度 校核齒根彎曲強(qiáng)度用以下公式 (2-6)/221mNzbYKTFsF (1)復(fù)合齒形系數(shù)根據(jù) 由表 2-5 查得2, 0.41s (2)確定許用應(yīng)力 F。 對于長期單面工作的齒輪,其齒根受脈動循環(huán)彎曲應(yīng)力,此時 可按下F 式計算 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 14 (2-7)minFS 由圖 1-7 查得 21min/530NF 查表 2-6 得 ,由式( 2-7)得.iSF/3.5.1 (3)式中已知 , , ,5.KmNT465.1mb48 (4)校核計算。 由式(2-6)得 222 /3.5/01.8645.18 NFF 校核計算安全。 4結(jié)構(gòu)設(shè)計 齒輪按照表 2-9 進(jìn)行設(shè)計。初步取 d=30mm,利用軸肩作軸向固定,8X22 的 鍵作周向固定。查表 2-10 得,鍵 t=4.0mm,t 1=3.3mm。n 1取 1mm。 表 2-9 圓柱齒輪結(jié)構(gòu)及尺寸 d6.1Bl)52(namzfd).( naD101)(5.0d)(201較 小 時 可 不 鉆 孔dm 浙江理工大學(xué)本科畢業(yè)設(shè)計(論文) 15 表 2-10 平鍵 軸 d 鍵 bxh 公稱 尺寸 軸 t 轂 t1 68 2x2 2 1.2 1 810 3x3 3 1.8 1.4 1012 4x4 4 2.5 1.8 1217 5x5 5 3.0 2.3 1722 6x6 6 3.5 2.8 2230 8x7 8 4.0 3.3 3038 10 x8 10 5.0 3.3 3844 12x8 12 5.0 3.3 4450 14x9 14 5.5 3.8 鍵長系列: 6,8,10,12,14,16,18,20,22,25,28,32,36,40,45,50,56,63,70, 80,90,100,110,125,140,160,180, 得: 模數(shù) m=1.5; 分度圓半徑 d=48mm; 齒頂圓直徑 ad=99mm; 齒根圓直徑 f=92.25mm; 齒數(shù) z=64。 2.2.4 攪拌軸的設(shè)計 1選擇軸的材料 攪拌摩擦焊機(jī)的功率 P=2.99KW,由于功率不大又無特殊要求,故攪拌軸可 選用常用的 45 號鋼并作正火處理。查得 。2/60mNB 對于一般的傳動軸,可按下式計算軸的最直徑 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 16 (2-8))(2.01593336mnPCd 查表 2-12 得 C=118-107,由式(2-8)得 )(26.90.183d 計算所得是最小處的軸徑,不妨取 d=20mm,前端留出 M20X20 于攪拌頭的 夾具相連,后端也留出 M20X20,用于做軸向固定。 表 2-11 按轉(zhuǎn)矩計算軸用的t和 C 值 軸的材料 Q235 35,Q275 45 40Cr,35SiMn t N/mm2 12-20 20-30 30-40 40-52 C 160-135 135-118 118-107 107-98 2軸的結(jié)構(gòu)設(shè)計 圖 2-4 攪拌軸示意圖 d1=20mm,L 1=20mm,此處用于軸的軸向固定選用 M20 螺母(GB6170-86) , 并加彈簧墊片(GB93-87) 。 d2=25mm,L 2=40mm,由于該軸的轉(zhuǎn)速為 6000r/min,30205 圓錐滾子軸承在 脂潤滑的情況下極限轉(zhuǎn)速為 7000r/min,符合要求,故選擇 30205 的圓錐滾子軸 承。具體數(shù)據(jù)參考表格 2-12。 浙江理工大學(xué)本科畢業(yè)設(shè)計(論文) 17 表 2-12 圓錐滾子軸承(GB/T2971994) 尺寸/mm 極限轉(zhuǎn)速 r/min軸承 代號 d D T B C 脂潤 滑 油潤 滑 30203 17 40 13.25 12 11 9000 12000 30204 20 47 15.25 14 12 8000 10000 30205 25 52 16.25 15 13 7000 9000 30206 30 62 17.25 16 14 6000 7500 30207 35 72 18.25 17 15 5300 6700 30208 40 80 19.25 18 16 5000 6300 d3=30mm, L3=46mm,用于安裝齒輪,此處開一個 8X32,t=4.0,ti=3.3 的鍵 槽 d4=36mm, L4=6mm,用于齒輪的軸向固定 d5=32mm, L5=72mm d6=25mm,L 6=16mm,用于安裝 30205 軸承 d7=20mm,L 7=20mm,用于安裝攪拌頭夾具 軸的總長為 220mm 30206 軸承用 1 號二硫化鉬鋰基脂進(jìn)行潤滑,由表 1-13 查得,符合 6000r/min 轉(zhuǎn)速的要求。 3軸上受力分析 齒輪對軸的作用力為 ,攪拌摩擦頭對軸的作用力NFQ02.164.3 為 ,軸向力 ,則:NF4.1阻 a78 水平面 HRF219阻阻 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 18 解得 NRH56.27131 垂直面 VQF122940 解得 NRV3.521 則 NVH 23.18.256.742211 表 2-13 圓錐滾子軸承的基本額定動載荷 C 和基本額定靜載荷 C0 KN 軸承型號 C C0 e Y Y0 X 30204 25.0 18.0 0.35 1.7 1.0 30205 30.0 23.0 0.37 1.6 0.9 30206 39.0 29.5 0.37 1.6 0.9 30207 49.0 37.0 0.37 1.6 0.9 30208 55.0 41.5 0.37 1.6 0.9 30209 59.0 46.0 0.40 1.5 0.8 30210 66.0 53.5 0.42 1.4 0.8 0.40 查表 2-13 得 e=0.37,Y=1.6,X=0.40 表 2-14 角接觸型軸承派生軸向力 S 角接觸球軸承 C 型( =15 0) AC 型(=25 0) B 型(=40 0) 圓錐滾子軸承 S=eR S=0.68R S=1.14R S=R/(2Y) 由表 2-14 得 NYRS07.428.161 浙江理工大學(xué)本科畢業(yè)設(shè)計(論文) 19 NSFa07.41221 ,軸有沿 方向移動的趨勢,軸承 1 被“壓緊” ,軸承 2 被21SFa2 “放松” ,由平衡條件可得作用在軸承 1 和 1 上的軸向載荷分別為NSANFa07.47.24.821 因軸承上的作用力大于軸承上的作用力,故僅對軸承進(jìn)行壽命計算, 軸承壽命可由下式進(jìn)行計算 (2-9))(601hPCnLh (2-10)(YAXRK 表 2-15 動載荷系數(shù) KP 載荷性質(zhì) 平穩(wěn)或有輕微沖擊 中等沖擊和振動 強(qiáng)烈沖擊和振動 KP 1.01.2 1.21.8 1.83.0 查表 2-15 得 ,由式(2-10)得2.1P N36.410).286.1340( 查表 1-14 得 C=39.0KN,由式(2-9)得 hLh 453821)6.10(601 4計算彎矩 水平面彎矩 截面 b: )(4.1598.1mNFMbH 阻 垂直面彎矩 截面 a: )(.602.6840QaV 5計算扭矩 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 20 表 2-16 軸的許用彎曲應(yīng)力 N/mm 2 材料 S +1b 0b -1b 400 130 70 40 500 170 75 45 600 200 95 55 碳素鋼 700 230 110 65 800 270 130 75 合金鋼 1000 330 150 90)(461509.215.9105.966 mNnPT 又根據(jù) B=600N/mm2,查表 2-16 得 -1b=55N/mm2, 0b=95N/mm2,故8.)(674158.0NT 6計算當(dāng)量彎矩 截面 a: )(8.317)(22 mTMaae 截面 b: )(9.5)(22 Nbbe 7分別計算 a 和 b 處的直徑 mMdbaea 27.851.031.03 bIeb .9.331 結(jié)構(gòu)設(shè)計確定的直徑為 20mm,截面 b 處為螺紋聯(lián)接沒有削弱,所以,此軸 強(qiáng)度足夠,符合設(shè)計要求。 2.2.5 攪拌系統(tǒng) V 帶設(shè)計 帶輪傳遞的功率:p=2.9kw,轉(zhuǎn)速約為 6000r/min,滿足傳動比為 i=3, (由 浙江理工大學(xué)本科畢業(yè)設(shè)計(論文) 21 于電機(jī)的額定轉(zhuǎn)速為 2000r/min) 1選擇 V 帶型號 計算功率 PC由下式確定 (2-11)PKAC 式中:K A工作情況系數(shù) P需要傳遞的名義功率(KW) 查表 2-3 得工作情況系數(shù) ,由式(2-17)計算得1.AKWPC9.32 根據(jù) PC和 n 由圖 1-9 選用 Z 型 V 帶。 2確定帶輪基準(zhǔn)直徑 dd1、d d2 已知 (2-12)12i (2-13)0120188ad (2-14)adL4)()(2121 圖 2-5 帶傳動示意圖 小帶輪直徑 dd1宜選大些,可減小帶的彎曲應(yīng)力,有利于延長帶的壽命;在 傳遞的轉(zhuǎn)矩一定時,d d1選大一些可降低帶工作時的圓周力,從而可以減少帶的 根數(shù)。通常小輪直徑 dd1應(yīng)大于或等于最小基準(zhǔn)直徑 dmin。若 dd1過大,傳動的外 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 22 廓也將增大。由表 1-18 選擇小輪直徑為 dd1=60mm, 由式(2-12)得mid1806312 表 2-17 V 帶輪最小基準(zhǔn)直徑 dmin及基準(zhǔn)直徑系列 mm V 帶輪槽型 Y Z A B C D E dmin 20 50 75 125 200 355 500 基準(zhǔn)直 徑系列 20 22.4 25 28 31.5 35.5 40 45 50 60 63 71 75 80 8590 95 100 106 112 118 125 132 140 150 160 170 180 200 212 224 236 250 265 280 315 355 375 由表 2-17 選擇 dd2=180mm 實際傳動比 36018i 實際轉(zhuǎn)速 min/2rn 傳動比偏差 ,小于 5%,符合條件。0 3驗算帶速 V0 帶速太高,帶的離心力很大,使帶的離心應(yīng)力增大,并使帶與輪之間的壓 緊力減小,摩擦力隨之減小,從而使傳動能力下降;帶速過低,傳遞相同功率 時帶所傳遞的圓周力增大,需要增加帶的根數(shù)。一般應(yīng)使帶速 V 在 525m/s 范 圍內(nèi)工作,尤以 V=1020m/s 為宜。帶速由下式確定 (2-15)1062ndV 由式(2-15)得 smnd/81061062 帶速在 525m/s 范圍內(nèi),符合要求。 4.確定中心距 a,V 帶基準(zhǔn)長度 Ld (1)初選中心距 a0。設(shè)計時對中心距有一定的要求,即大于 400mm,根據(jù) 得 ,初選 a0為 450mm,符合取值)(2)(7.0212dd4860a 范圍。 浙江理工大學(xué)本科畢業(yè)設(shè)計(論文) 23 (2)計算初定的帶長 Ld。 。由式(2-7)得 )(8.4)()(2021210 madadd (3)基準(zhǔn)帶長 Ld。由表 2-18 選用 Ld=1400mm, KL=1.14 表 2-18 普通 Z 型 V 帶基準(zhǔn)長度 Ld系列及長度系數(shù) KL Ld 400 450 500 560 630 710 800 KL 0.87 0.89 0.91 0.94 0.96 0.99 1.00 Ld 900 1000 1120 1250 1400 1600 1800 KL 1.03 1.06 1.08 1.11 1.14 1.16 1.18 (4)實際中心距 a。實際中心距由下式確定 (2-16)200dL 由式(2-16)得 )(6.5078.1445ma 考慮安裝和張緊 V 帶的需要,留出50mm 作為中心距距調(diào)整量,不妨取 550mm。 5核算小輪上包角 1 由式(2-14)得 001201 127.6488ad 6確定 V 帶根數(shù) z (2-17)LACKP)(00 (2-18)12ibn 表 2-19 傳動比系數(shù) Ki 傳動比 i 1.00-1.04 1.05-1.19 1.20-1.49 1.50-2.95 2.95 Ki 1.00 1.03 1.08 1.12 1.14 表 2-20 彎曲影響系數(shù) Kb 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 24 普通 V 帶 型號 Y Z A B C D E Kb(10-3) 0.06 0.39 1.03 2.65 7.50 26.6 49.8 根據(jù) n1和 n2得 ,查表 1-20 得 Ki=1.14,查表 1-21 得KWP48.0 Kb=0.39x10-3,由式(1-17)得 W28.0)14.(60139.3 表 2-21 包角系數(shù) 小輪包 角 1 1800 1750 1700 1650 1600 1550 1500 1450 K 1.00 0.99 0.98 0.96 0.95 0.93 0.92 0.91 查表 2-8 得 K =0.93,由式(2-17)得 79.314.960)28.4.0(3z 選用 Z 型 V 帶 4 根。 7確定帶的預(yù)拉力 F 預(yù)拉力是保證帶傳動正常工作和重要條件。預(yù)拉力不足,極限摩擦力減小, 傳動能力下降;預(yù)拉力過大,又會使帶的壽命降低,軸和軸承的壓力增大。 表 2-22 普通 V 帶的規(guī)格 型號 Y Z A B C D E 每米帶長質(zhì)量 q(Kg/m) 0.04 0.06 0.10 0.17 0.30 0.60 0.87 查表 2-22 得 Z 型 V 帶的質(zhì)量為 mKgq/06. 單根普通 V 帶合適的預(yù)拉力由下式確定 (2-19)20)15.(qvzvPFC 由式(2-19)得 N98.5406.)9.2(184.3520 浙江理工大學(xué)本科畢業(yè)設(shè)計(論文) 25 8計算帶傳動作用在軸上的力 (2-20)2sin10zFQ 為設(shè)計安裝帶輪的軸和軸承,必須確定帶傳動作用在帶輪軸上的力 FQ。 由式(2-20)得 NFQ 04.327.16sin98.5420 9帶輪結(jié)構(gòu)設(shè)計 (1)大 V 帶輪設(shè)計 圖 2-6 大帶輪示意圖 大 V 帶輪結(jié)構(gòu)按照圖 2-6 進(jìn)行設(shè)計。用 M6X16 的緊定螺釘與電機(jī)輸出軸作 軸向固定,8X50 的鍵作周向固定。查表 1-25 得,鍵 t=4.0mm,t 1=3.3mm。C 取 1mm。 mDd30 mdd60,4830)28.1().( 11 取feZB52LL,)5.()2.(取mhdaa 18420c 5).9()(2 msBs 12,6.0)3.3.0 取 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 26 mdk 1072546)(21 具體尺寸見零件圖。 (2)小 V 帶輪設(shè)計 圖 2-7 小 V 帶輪的結(jié)構(gòu)及尺寸 小 V 帶輪結(jié)構(gòu)按照圖 2-7 再結(jié)合表 2-23 進(jìn)行設(shè)計。用中間軸作軸向固定, 6X32 的鍵作周向固定。查表 2-24 得,鍵的 t=3.5mm,t 1=2.8mm,C 取 1mm。md20mfeZB5281)4()1( LL 70,6025.5. 取hdaa602 具體尺寸見零件圖。 2.2.6X-Y 工作臺設(shè)計 X-Y 平臺外形尺寸及重量估算 Y 向拖板(上拖板)尺寸:長寬高:60050040 重量:按重量體積材料比重估算 ;N3231056.108.74056 X 向拖板(下拖板)尺寸:80080040 浙江理工大學(xué)本科畢業(yè)設(shè)計(論文) 27 重量: N3231096.108.7408 導(dǎo)軌及滑塊重量查表得:約 60N; 夾具及工件重量:約 200N; 步進(jìn)電動機(jī):15.8N; 底座:140090040 重量 3.93 N;310 X-Y 平臺總重量:約 3993.6N。 攪拌頭向下的壓力及行走抗力:壓力 P 壓=84.7N,行走抗力 14.4N。 (以焊接 15mm 鋁板為準(zhǔn))FP 根據(jù)相關(guān)數(shù)據(jù)選取 BRS25B-L100 的導(dǎo)軌,如圖 2-8 所示 圖 2-8 導(dǎo)軌與滑塊示意圖 2.2.7 傳動絲杠設(shè)計 攪拌頭對工件的壓力為 87.4N,故工作臺面向下的總壓力為 NF3.4078.639壓 鋼與鋼在有潤滑劑時的摩擦系數(shù) 20f=0.050.1,得工作臺與工作面板間 的滑動摩擦力為 f 8.4073.1.0壓摩 由于發(fā)生熱塑性變形的金屬對攪拌頭的也有一定阻力,同時為了防止工作 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 28 臺面鎖死不動,故將伺服系統(tǒng)的推力增加一點,即可提供 500N 左右的力。工作 臺移動的最大速度約為 600mm/min,因此,絲杠傳動系統(tǒng)傳遞的功率為 WVFP301650 查得絲杠傳動的效率為 . 因此,伺服電機(jī)的功率約為 WP1056.03.0伺 選用 SM130-100-15-LFB 伺服電機(jī)(最大轉(zhuǎn)速:1500r/min,額定功率 1kw) 初選傳動絲杠的梯形螺紋螺距為 2mm,則絲杠最大轉(zhuǎn)速 ,減速機(jī)構(gòu)的減速比為:min/3026rn絲 5301i 傳動比為 i 絲杠傳動的輸出功率為 500W 左右,輸入功率為 1000W 左右,傳動效率 0.5,因工作臺平時正常運動所需的功率不到 400W,即使絲杠傳動效率有所下 降,工作臺也能照樣正常運行。 工作臺箱體內(nèi)腔長度為 600mm,絲杠傳動功率不大,轉(zhuǎn)速低,且受徑向力 很小(僅齒輪對軸有徑向作用力) ,用 1 號二硫化鉬鋰基脂對絲杠進(jìn)行潤滑。絲 杠兩端選用 6205 軸承,6205 軸承用 1 號二硫化鉬鋰基脂進(jìn)行潤滑。查表 1-13 得 6205 軸承的寬度為 15mm,絲杠兩端為 2X450的倒角,因此,絲杠總長為 L=700mm。 1選擇絲杠材料 此伺服系統(tǒng)的功率不大,故選用常用的 45 號鋼并作正火處理。 2確定絲杠的最小直徑 查表得系數(shù) 2, 1,壽命值 L=PfLQHw3wfHf 610nT 查表得使用壽命時間 T1500h,初選絲杠螺距 t=5mm,的絲杠轉(zhuǎn)速 浙江理工大學(xué)本科畢業(yè)設(shè)計(論文) 29 min)/(3026.10maxrtVn 3所以 L 756 查表得 2, 1wfHf Y 向絲杠牽引力 w93.018.61.04.1Gy4. 當(dāng)fPy X 向絲杠牽引力: w.5896.3.01.Gx4.1當(dāng)fPx 所以最大動負(fù)荷 Y 向 N.89.3273Qy X 向 N5641x 對于一般的傳動絲杠,可按下式計算其最直徑 (2-21))(2mPQd 式中:Q軸向載荷(N) d2螺紋中徑(mm) P許用壓強(qiáng)(N/mm 2) ,2/Hph/ 為使受力分布比較均勻,螺紋工作圈數(shù)不宜太多,一般取 ,梯5.21 形螺紋 。已知 ,取P=4 N/mm 2,由式(2-21)得5.0NQ0max md69.1345.8362H.20.12 絲杠兩端用的 6206 軸承,為方便安裝,故取絲杠螺紋大徑為 d=38mm 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 30 圖 2-9 絲杠示意圖 d1=30mm,L 1=18mm,用于安裝 6206 軸承,查得 6205 軸承寬度為 16mm; d2=36mm,L 2=6mm,符合 6206 軸承的安裝要求; d3=38mm, L3=620mm,絲杠的梯形螺紋; d4=30mm, L4=30mm,用于安裝減速大齒輪,用平建 822 做軸向固定; d5=22mm, L5=30mm,用于安裝 6205 軸承,用作軸承軸向定位。 2.2.8 減速齒輪的設(shè)計 傳遞功率 ,轉(zhuǎn)速 , ,則齒數(shù)比 。KWP7.0min/150rn5齒 5u 1選擇齒輪材料 為了便于制造,采用軟齒面齒輪,查表 1-3 得,大齒輪采用 45 鋼正火處理, 170210HBS,小齒輪采用 45 鋼調(diào)質(zhì)處理,217255HBS。 2按齒面接觸強(qiáng)度設(shè)計 一對鋼制外嚙合齒輪設(shè)計公式為 (2-22))(1)67(321 mKTuddH (1)計算小齒輪傳遞的轉(zhuǎn)矩。 (電機(jī)的平均傳動功率為 700w))(67.4510.5.9105.966 NnPT (2)選擇小齒輪齒數(shù) ,則實際傳動比為z齒i 浙江理工大學(xué)本科畢業(yè)設(shè)計(論文) 31 傳動比誤差為 0%15i (3)轉(zhuǎn)速不高,功率不大,選擇齒輪精度為 8 級。 (4)載荷平穩(wěn),對稱布局,軸的鋼度較大,查表 1-4 取 K=1.5。 (5)查得齒寬系數(shù) 。1d (6)確定許用接觸應(yīng)力 查得 2/380minNH 查得 5.1iS 對于長期工作的齒輪, H可按下式計算 (2-23)minS 由式(2-23)得 2/30425.18NH (7)計算齒輪分度圓直徑。 由式(2-22)得 md 18.32167.45.5)36871(2 (8)計算模數(shù)。 7.1932zdm 查表 2-23 取 m=2。 表 2-23 漸開線圓柱齒輪標(biāo)準(zhǔn)模數(shù)(GB135787) mm 第一系列 0.1 0.12 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.8 1 1.25 1.5 2 2.5 3 4 5 6 8 10 12 16 20 25 32 40 50 第二系列 0.35 0.7 0.9 1.75 2.25 2.75 3.5 4.5 5.5 7 9 14 18 (9)計算齒輪主要尺寸及圓周速度。 雙攪拌軸攪拌摩擦焊機(jī)設(shè)計 32 表 2-24 傳遞動力的齒輪精度(公差組)等級的選擇與應(yīng)用 圓周速度(m/s) 圓柱齒輪 錐齒輪 精度等級 直齒 斜齒 直齒 斜齒 應(yīng)用 6 級 15 30 12 20 高速重載齒輪傳動 7 級 10 15 8 10 高速中載或中速重載的齒輪傳動 8 級 6 10 4 7 一般機(jī)械中對精度無特殊要求的齒輪 9 級 2 4 1.5 3 低速或?qū)纫蟮偷凝X輪 分度圓直徑 mzd382191mzd190252 中心距 za4)91()(21 齒輪寬度 ,取 mdb4.308.1 mb32,61 圓周速度 snV/984.10658106 查表 2-24 可知能