CA6140車床尾座體工藝工裝設(shè)計(jì)【說明書+CAD】
CA6140車床尾座體工藝工裝設(shè)計(jì)【說明書+CAD】,說明書+CAD,CA6140車床尾座體工藝工裝設(shè)計(jì)【說明書+CAD】,ca6140,車床,尾座體,工藝,工裝,設(shè)計(jì),說明書,仿單,cad
江陰職業(yè)技術(shù)學(xué)院畢業(yè)設(shè)計(jì)說明書
江陰職業(yè)技術(shù)學(xué)院
畢業(yè)設(shè)計(jì)說明書
課 題:CA6140車床尾座體工藝工裝設(shè)計(jì)
子課題:
同課題學(xué)生姓名:
專 業(yè) 機(jī)電一體化
學(xué)生姓名 徐長喜
班 組 04機(jī)電(一)班
學(xué) 號(hào)
指導(dǎo)教師
完成日期 20070401
目 錄
摘要…………………………………………………………………………………3
ABSTRACT………………………………………………………………………4
第一章 引言………………………………………………………………………5
1.1機(jī)械制造業(yè)的發(fā)展趨勢(shì) …………………………………………………6
1.2 健康綠色的制造業(yè)………………………………………………………8
1.3課題來源…………………………………………………………………12
第二章 設(shè)計(jì)介紹 ……………………………………………………………13
2.1材料的選用 ……………………………………………………………13
2.2 中心架總成………………………………………………………………13
2.3 部件組織結(jié)構(gòu)的注意點(diǎn)…………………………………………………14
致 辭………………………………………………………………………………15
參考文獻(xiàn)…………………………………………………………………………16
CA6140車床尾座體工藝工裝設(shè)計(jì)
摘要
本文針對(duì)目前比較常見的機(jī)床CA6140車床尾座體工藝工裝設(shè)計(jì),經(jīng)過對(duì)成品的觀察與分析,以及實(shí)際操作時(shí)的經(jīng)驗(yàn)、測(cè)量,特設(shè)計(jì)出該類中心架的生產(chǎn)圖紙。因?yàn)楸救怂接邢蓿恼轮须y免存在著不足與缺陷,望廣大讀者批評(píng)指正。
關(guān)鍵詞:中心架 CA6140車床尾座體工藝工裝設(shè)計(jì)
"C6140 machine-center" design
Abstract view of the current more common C6163 Machine Tool Center frame for design, right through to the finished product observation and analysis, and the actual operational experience, measurement, Special design of such centers-production drawings. Because I was limited, and it is inevitable that the article had weaknesses and deficiencies and hopes readers criticized corrected.
Keywords : center C6163 machine tool design
第一章
引言
隨著現(xiàn)代制造業(yè)的發(fā)展,越來越多的設(shè)備被運(yùn)用到制造業(yè)中,而制造業(yè)也需要越來越多的設(shè)備來滿足發(fā)展。企業(yè)需要發(fā)展,就需要投入相應(yīng)的設(shè)備來滿足企業(yè)的需要,但是面對(duì)眾多的新設(shè)備,這些設(shè)備的配件夜成為了我們?cè)絹碓礁叩男枨?。本文我將結(jié)合CA6140車床尾座體工藝工裝設(shè)計(jì),對(duì)原有的中心架進(jìn)行修改,以設(shè)計(jì)出一臺(tái)新型的滿足一般企業(yè)需要的中心架。由于條件不足,且本人經(jīng)驗(yàn)和水平都還很有限,設(shè)計(jì)中一定存在許多不足之處,望各位老師給予指正。
- 17 -
1.1 機(jī)械制造業(yè)的發(fā)展趨勢(shì)
隨著當(dāng)今社會(huì)的發(fā)展機(jī)械制造行業(yè)受到了越來越多人的關(guān)注,而目前機(jī)械制造業(yè)的發(fā)展趨勢(shì)有以下幾個(gè)特點(diǎn)
柔性化、靈捷化、智能化和信息化
一、柔性化——使工藝裝備與工藝路線能適應(yīng)于生產(chǎn)各種產(chǎn)品的需要。
二、靈捷化——使生產(chǎn)力推向市場(chǎng)準(zhǔn)備時(shí)間為最短,使工廠機(jī)械靈活轉(zhuǎn)向。
三、智能化——柔性自動(dòng)化的重要組成部分,它是柔性自動(dòng)化的新發(fā)展和延伸
。
四、信息化——機(jī)械制造業(yè)將不再由物質(zhì)和能量借助于信息的力量生產(chǎn)出的價(jià)
值,而是由信息借助于物質(zhì)和能量的力量生產(chǎn)出的價(jià)值,因此信息產(chǎn)業(yè)和智力產(chǎn)業(yè)
將成為社會(huì)的主導(dǎo)產(chǎn)業(yè),機(jī)械制造業(yè)也將是由信息主導(dǎo)的,并采用先進(jìn)生產(chǎn)模式、
先進(jìn)制造系統(tǒng)、先進(jìn)制造技術(shù)和先進(jìn)組織合理方式的全新的機(jī)械制造業(yè)。
21世紀(jì)初機(jī)械制造業(yè)的重要特征表現(xiàn)在它的全球化、網(wǎng)絡(luò)化、虛擬化以及環(huán)保
協(xié)調(diào)的綠色制造等,人類不僅要擺脫繁重的體力勞動(dòng),而且要從煩瑣的計(jì)算分析等
腦力勞動(dòng)中解放出來,以便有更多的精力從事高層次的創(chuàng)造性勞動(dòng)。智能化促進(jìn)柔
性化,它使生產(chǎn)系統(tǒng)具有更完善的判斷與適應(yīng)能力。
近年來產(chǎn)品更迭不斷加快,各種各樣的需求不斷增加。一些發(fā)達(dá)工業(yè)國家,例
如美國、西德、瑞士等國統(tǒng)計(jì)表明,1995-1998年機(jī)械零件的種類增加了50%;80%
的工作人員不直接與材料打交道,而與信息打交道;85%的活動(dòng)不直接增加產(chǎn)品的
附加值,產(chǎn)品、工藝過程、組織管理日益復(fù)雜化;設(shè)計(jì)、工藝準(zhǔn)備等均占去為完成
用戶訂貨總時(shí)間的65%以上。另一方面,在激烈的市場(chǎng)競(jìng)爭(zhēng)中,供貨期與質(zhì)量往往
起著比價(jià)格更為重要的作用,靈捷化就成為擺在機(jī)械制造業(yè)面前的頭等重大課題。
機(jī)械制造行業(yè)是創(chuàng)造人類財(cái)富的支柱產(chǎn)業(yè),但同時(shí)又大量消耗掉人類社會(huì)的有限資源,并且是造成當(dāng)前環(huán)境污染問題的主要根源之一,為此,機(jī)械行業(yè)實(shí)施可持發(fā)展戰(zhàn)略已勢(shì)在必行。綠色制造正是基于這一點(diǎn)而產(chǎn)生和發(fā)展起來的,是機(jī)械行業(yè)的發(fā)展趨勢(shì),或者說綠色制造是21世紀(jì)制造業(yè)的可持續(xù)發(fā)展模式。
傳統(tǒng)制造業(yè)已不適應(yīng)可持續(xù)發(fā)展的要求
??? 傳統(tǒng)制造業(yè)一般是純粹從經(jīng)濟(jì)效益的角度去實(shí)施制造過程的,在設(shè)計(jì)產(chǎn)品時(shí)著力考慮產(chǎn)品的功能與品質(zhì),制造產(chǎn)品時(shí)片面追求高效率與低成本。不斷涌現(xiàn)的新穎高效的先進(jìn)制造技術(shù)推動(dòng)了制造業(yè)的快速發(fā)展,產(chǎn)品更新?lián)Q代周期不斷縮短,加速了材料的消耗和工藝裝備的淘汰;同時(shí)也產(chǎn)生了更多的廢棄物,從而使人類賴以生存的環(huán)境不堪重負(fù),嚴(yán)重制約了社會(huì)經(jīng)濟(jì)及人類文明的可持續(xù)發(fā)展。目前在環(huán)境保護(hù)方面,制造業(yè)存在以下問題:
1.廢舊或閑置設(shè)備回收和再利用率低
??? 近年來,由于數(shù)控機(jī)床、加工中心及FMS\CIMS的應(yīng)用,大多數(shù)傳統(tǒng)機(jī)床在工廠逐步被摒棄。如何改造這些舊設(shè)備成了擺在我們面前的一大課題。
2.能源和原材料的浪費(fèi)現(xiàn)象十分嚴(yán)重
??? 目前,我國制造業(yè)工藝水平不高,多數(shù)企業(yè)缺乏環(huán)保意識(shí)。落后的制造工藝使得能源與原材料的利用率不高。且浪費(fèi)也十分嚴(yán)重。
3. 產(chǎn)品的回收利用率極低
??? 長期以來,傳統(tǒng)的生產(chǎn)模式是按照“生產(chǎn)一流通一消費(fèi)一廢棄”的開式循環(huán)。制造業(yè)的生產(chǎn)基本上不考慮廢棄產(chǎn)品的回收利用,特別是機(jī)械制造業(yè)的回收利用率更低。
4.制造過程中產(chǎn)生的廢棄物得不到無公害處理
??? 許多企業(yè)在產(chǎn)品制造過程中,注重的是如何以最低的成本高效地生產(chǎn)出產(chǎn)品,而很少關(guān)心加工過程中使用的工具及原材料等對(duì)環(huán)境的污染。高能耗、重污染的工藝仍然在生產(chǎn)中得到廣泛的應(yīng)用,而先進(jìn)的環(huán)保型工藝由于成本較高而被擱置,企業(yè)不愿在治理廢棄物方面有所花費(fèi)。這樣一來,在企業(yè)獲得較高利潤的同時(shí),人類生存的環(huán)境卻遭到了前所未有的破壞。
隨著這總形式的嚴(yán)峻發(fā)展,一個(gè)新的課題又?jǐn)[在了我們的面前:如何在目前的基礎(chǔ)上改造我們的機(jī)械制造業(yè),使我們的制造業(yè)逐漸走向綠色、健康、環(huán)保的大道。
1.2 綠色健康的制造業(yè)
工業(yè)革命以來,人類社會(huì)經(jīng)過100多年的快速發(fā)展,目前已經(jīng)面臨社會(huì)發(fā)展與環(huán)境和資源之間的深刻矛盾。在人類對(duì)自己長期以來采用較為粗放的、大規(guī)模工業(yè)發(fā)展模式及由此而引起的資源枯竭、環(huán)境惡化等問題的反思之后,如何選擇一條適合該國國情的可持續(xù)發(fā)展道路,實(shí)現(xiàn)人與自然的和諧相處,成為世界大多數(shù)國家的共識(shí)。這種共識(shí)的代表就是1972年在瑞典斯德哥爾摩召開的“聯(lián)合國人類環(huán)境會(huì)議”通過的《人類環(huán)境行動(dòng)計(jì)劃》,1992年聯(lián)合國在巴西里約熱內(nèi)盧召開的“世界環(huán)境與發(fā)展大會(huì)”通過的《關(guān)于環(huán)境與發(fā)展的里約熱內(nèi)盧宣言》、《21世紀(jì)議程》,以及2002年聯(lián)合國在南非約翰內(nèi)斯堡召開的“可持續(xù)發(fā)展世界首腦會(huì)議”通過的《關(guān)于可持續(xù)發(fā)展的約翰內(nèi)斯堡宣言》與《可持續(xù)發(fā)展世界首腦會(huì)議實(shí)施計(jì)劃》,其核心是提出了應(yīng)建立社會(huì)、經(jīng)濟(jì)、資源和環(huán)境相協(xié)調(diào)的可持續(xù)發(fā)展戰(zhàn)略。
??? 作為人類社會(huì)可持續(xù)發(fā)展的重要標(biāo)志,是使子孫后代擁有與當(dāng)代人相同,甚至比當(dāng)代人還多的人均財(cái)富和生存發(fā)展空間。這就要求當(dāng)代人要有對(duì)歷史和子孫后代負(fù)責(zé)的精神,切實(shí)地改變現(xiàn)在傳統(tǒng)的發(fā)展思維模式以及由這種思維模式而產(chǎn)生的生產(chǎn)、生活和經(jīng)濟(jì)發(fā)展方式,特別是在這么一個(gè)經(jīng)濟(jì)快速增長、人口眾多、人均資源不到世界平均水平1/2的發(fā)展中國家更是如此。應(yīng)該看到,由于中國經(jīng)濟(jì)基礎(chǔ)薄弱,技術(shù)相對(duì)落后,發(fā)展大部分是通過以自然資源和勞動(dòng)力為主要的投入手段所推動(dòng)的,是一種粗放型的經(jīng)濟(jì)增長方式。這種發(fā)展的結(jié)果,是現(xiàn)在面臨越來越嚴(yán)重的資源短缺和生態(tài)環(huán)境惡化問題。
??? 經(jīng)濟(jì)發(fā)展必須有利于資源的良性利用,有利于生態(tài)系統(tǒng)的良性循環(huán),有利于改善和提高人民的生活水平;而不能以浪費(fèi)資源、破壞生態(tài)環(huán)境和降低人民生活質(zhì)量為代價(jià)。黨中央提出了“要樹立以人為本,實(shí)現(xiàn)全面、均衡和可持續(xù)的科學(xué)發(fā)展觀”,這體現(xiàn)了中國政府在國家經(jīng)濟(jì)發(fā)展基本模式上觀念的進(jìn)步。作為可持續(xù)發(fā)展戰(zhàn)略的重要組成部分,以綠色設(shè)計(jì)和綠色制造為主要特征的綠色浪潮正在席卷全球。通過綠色設(shè)計(jì)和綠色制造,人們希望實(shí)現(xiàn)對(duì)資源的循環(huán)利用、降低能源消耗和最大程度地減小產(chǎn)品制造和使用對(duì)環(huán)境的影響,實(shí)現(xiàn)可持續(xù)發(fā)展的目標(biāo)。
??? 下面,從機(jī)械產(chǎn)品設(shè)計(jì)理念的角度,討論綠色設(shè)計(jì)理念對(duì)機(jī)械設(shè)計(jì)的影響。
??? 機(jī)械產(chǎn)品綠色設(shè)計(jì)的概念
??? 有關(guān)機(jī)械產(chǎn)品綠色設(shè)計(jì)概念方面的研究,國內(nèi)近年來進(jìn)行得比較多。機(jī)械產(chǎn)品綠色設(shè)計(jì)的概念可歸納為:機(jī)械產(chǎn)品綠色設(shè)計(jì)是一種基于產(chǎn)品整個(gè)生命周期,并以產(chǎn)品的環(huán)境資源屬性為核心的現(xiàn)代設(shè)計(jì)理念和方法,在設(shè)計(jì)中,除考慮產(chǎn)品的功能、性能、壽命、成本等技術(shù)和經(jīng)濟(jì)屬性外,還要重點(diǎn)考慮產(chǎn)品在生產(chǎn)、使用、廢棄和回收的過程中,對(duì)環(huán)境和資源的影響。
??? 其基本的內(nèi)涵有:
??? (1) 在產(chǎn)品設(shè)計(jì)的全過程中,產(chǎn)品的基本技術(shù)性能屬性與環(huán)境資源屬性、經(jīng)濟(jì)屬性并重,且環(huán)境資源屬性優(yōu)先。
??? (2) 在設(shè)計(jì)階段應(yīng)充分考慮產(chǎn)品在使用廢棄后的可拆性和回收利用性。
??? (3) 提出了產(chǎn)品設(shè)計(jì)者和生產(chǎn)企業(yè)在環(huán)境保護(hù)、節(jié)約資源方面應(yīng)承擔(dān)的社會(huì)責(zé)任。即對(duì)大宗工業(yè)產(chǎn)品,企業(yè)不但要生產(chǎn)產(chǎn)品,同時(shí),還應(yīng)在可能的范圍內(nèi),承擔(dān)產(chǎn)品回收和再利用的義務(wù)。
??? (4) 它是對(duì)傳統(tǒng)設(shè)計(jì)方法、設(shè)計(jì)理念的發(fā)展和創(chuàng)新,體現(xiàn)了人類對(duì)機(jī)械產(chǎn)品設(shè)計(jì)學(xué)科認(rèn)識(shí)的深化。
??? 傳統(tǒng)的機(jī)械產(chǎn)品設(shè)計(jì)側(cè)重的是產(chǎn)品的性能、質(zhì)量、成本等產(chǎn)品的基本技術(shù)與經(jīng)濟(jì)屬性,對(duì)產(chǎn)品的考慮最多到產(chǎn)品使用報(bào)廢為止。按傳統(tǒng)的機(jī)械產(chǎn)品設(shè)計(jì)理念,在產(chǎn)品使用報(bào)廢后,就成了一堆廢鐵和垃圾,與制造企業(yè)也沒有任何關(guān)系,報(bào)廢產(chǎn)品金屬零件的回收利用主要采用回爐冶煉方式,很少直接利用因而是一種“從搖籃到墳?zāi)埂钡倪^程。
??? 所以,綠色設(shè)計(jì)與傳統(tǒng)設(shè)計(jì)的根本區(qū)別在于:綠色設(shè)計(jì)要考慮產(chǎn)品的整個(gè)生命周期,從產(chǎn)品的構(gòu)思開始,在產(chǎn)品的結(jié)構(gòu)設(shè)計(jì)、零部件的選材、制造、使用、報(bào)廢和回收利用過程中對(duì)環(huán)境、資源的影響,希望以最小的代價(jià)實(shí)現(xiàn)產(chǎn)品“從搖籃到再現(xiàn)”的循環(huán)。
??? 綠色設(shè)計(jì)理念對(duì)現(xiàn)代機(jī)械產(chǎn)品設(shè)計(jì)的影響
??? 想法決定生活,理念決定設(shè)計(jì)。理念或觀念的進(jìn)步對(duì)社會(huì)發(fā)展有巨大的推動(dòng)作用,理念雖然不是具體的方法,但理念可以為具體方法的研究指引方向,而具體的設(shè)計(jì)方法,是建立在一定的設(shè)計(jì)理念之上的,理念是具體方法的基礎(chǔ)??v觀人類機(jī)械產(chǎn)品設(shè)計(jì)理念和產(chǎn)品設(shè)計(jì)技術(shù)的進(jìn)步歷程,不難看出,設(shè)計(jì)理念的進(jìn)步給產(chǎn)品設(shè)計(jì)帶來的巨大影響。從機(jī)械設(shè)計(jì)學(xué)科的角度,近代設(shè)計(jì)方法學(xué)的發(fā)展主要體現(xiàn)為:
· “功能思想”的提出;
· “人機(jī)學(xué)”思想的形成;
· “工業(yè)設(shè)計(jì)”學(xué)科的發(fā)展和成熟。
??? 在這三項(xiàng)近代機(jī)械設(shè)計(jì)學(xué)科的核心技術(shù)中,對(duì)后來機(jī)械產(chǎn)品設(shè)計(jì)的影響,都首先體現(xiàn)在由于它們出現(xiàn)而帶來的設(shè)計(jì)理念的進(jìn)步,其次才是具體的方法,所有先進(jìn)的具體設(shè)計(jì)方法如:優(yōu)化設(shè)計(jì)、可靠性設(shè)計(jì)、CAD等等,都是為實(shí)現(xiàn)設(shè)計(jì)理念服務(wù)的。
??? 例如:以美國人麥爾斯“顧客購買的不是產(chǎn)品本身,而是產(chǎn)品所具有的功能”為標(biāo)志的“功能思想”的提出,并逐步為人們廣泛的理解和接受后,使設(shè)計(jì)者認(rèn)識(shí)到:可以采取不同的原理、結(jié)構(gòu)來實(shí)現(xiàn)同樣的功能,它所帶來的是人們?cè)谠O(shè)計(jì)思想上的一次革命,大大地拓展了設(shè)計(jì)人員的視野,在此之前,人們?cè)谠O(shè)計(jì)時(shí),更多的是用數(shù)學(xué)、力學(xué)的方法來研究機(jī)械的設(shè)計(jì),用更合理的結(jié)構(gòu)設(shè)計(jì)去完善已能完成某種功能的機(jī)器,忽視了作為產(chǎn)品本質(zhì)的“功能”的研究。正是在功能思想的指導(dǎo)下,涌現(xiàn)出了大量采用新的功能原理的產(chǎn)品,如電子手表、激光打印機(jī)、噴墨打印機(jī)以及現(xiàn)在的數(shù)碼相機(jī)等。
??? 綠色設(shè)計(jì)作為一種新的設(shè)計(jì)方法,出現(xiàn)的時(shí)間并不長,還遠(yuǎn)沒有達(dá)到完善的程度,很多具體的方法還有待研究,但綠色設(shè)計(jì)作為一種新的設(shè)計(jì)理念,它的出現(xiàn),使人們看到了過去設(shè)計(jì)思想方法的不足,意識(shí)到了在過去長期的設(shè)計(jì)活動(dòng)中,所忽視的產(chǎn)品設(shè)計(jì)與環(huán)境資源之間的關(guān)系和產(chǎn)品設(shè)計(jì)對(duì)環(huán)境、資源的影響。綠色設(shè)計(jì)理念的提出,是機(jī)械設(shè)計(jì)學(xué)科發(fā)展歷史上一個(gè)重要的里程碑,是機(jī)械設(shè)計(jì)理念的一次革命和飛躍,它對(duì)現(xiàn)代機(jī)械設(shè)計(jì)學(xué)科所帶來的革命性影響主要表現(xiàn)為:
??? (1) 第一次從人類整體利益的高度,強(qiáng)調(diào)了設(shè)計(jì)者、生產(chǎn)企業(yè)在人類社會(huì)可持續(xù)發(fā)展和環(huán)境資源保護(hù)方面應(yīng)該承擔(dān)的社會(huì)責(zé)任。這種責(zé)任一方面可以通過國家法律的形式強(qiáng)制企業(yè)承擔(dān),如汽車尾氣的排放法規(guī)、鍋爐的尾氣排放法規(guī)、工業(yè)廢水的排放法規(guī)等,而更重要的是作為設(shè)計(jì)者和生產(chǎn)企業(yè),必須主動(dòng)意識(shí)到自己應(yīng)承擔(dān)的社會(huì)責(zé)任,在企業(yè)的產(chǎn)品開發(fā)、生產(chǎn)和企業(yè)發(fā)展過程中,能進(jìn)行自我約束,不能僅僅為了實(shí)現(xiàn)自己企業(yè)商業(yè)利益的最大化,而置社會(huì)利益于不顧。當(dāng)今所面臨的環(huán)境污染和資源短缺等問題,并不是由于個(gè)別企業(yè)或某一行業(yè)的行為造成的,而是整個(gè)社會(huì)在一段時(shí)間內(nèi)共同行為的累計(jì)結(jié)果。所以,綠色設(shè)計(jì)理念反映了人們對(duì)現(xiàn)代生產(chǎn)方式和生活方式所引起的生態(tài)和環(huán)境破壞的反思,從道德層面上提高了對(duì)設(shè)計(jì)師和企業(yè)素質(zhì)的要求,代表了一種新的設(shè)計(jì)文化,反映了人類道德認(rèn)知水平的提高,這種提高和認(rèn)識(shí)的深化,必將從更高的層次上,推動(dòng)社會(huì)文明的進(jìn)步和實(shí)現(xiàn)所追求的人類社會(huì)可持續(xù)發(fā)展的理想。綠色設(shè)計(jì)所代表的是“以人為本,實(shí)現(xiàn)人與自然和諧相處”的現(xiàn)代設(shè)計(jì)文化。所以,如果說“功能思想”的提出是在技術(shù)層面上推動(dòng)了設(shè)計(jì)學(xué)科的進(jìn)步;而“綠色設(shè)計(jì)理念”的提出是在人的思想道德和設(shè)計(jì)文化的層面上推動(dòng)了設(shè)計(jì)學(xué)科的進(jìn)步,它體現(xiàn)了:“地球環(huán)境與資源保護(hù)是大家的共同責(zé)任”的崇高思想。
??? (2) 對(duì)機(jī)械產(chǎn)品來講,設(shè)計(jì)是源頭。今天所面臨的主要由工業(yè)設(shè)備、工業(yè)產(chǎn)品制造與使用所造成的環(huán)境污染、資源浪費(fèi)等問題,除受當(dāng)時(shí)時(shí)代的科學(xué)技術(shù)發(fā)展水平的限制,對(duì)可能引起的問題預(yù)見、認(rèn)識(shí)不夠有關(guān)外,還在很大程度上與一些傳統(tǒng)落后的產(chǎn)品設(shè)計(jì)理念有關(guān)。例如:在過去的設(shè)計(jì)理念中,幾乎不考慮環(huán)境問題,也不考慮產(chǎn)品的回收利用問題,并將煙囪林立、濃煙滾滾、污水橫流、機(jī)器轟鳴等看成是工業(yè)化的標(biāo)志就是最典型的代表。對(duì)所制造和銷售的產(chǎn)品與企業(yè)和設(shè)計(jì)人員的關(guān)系,現(xiàn)在很多設(shè)計(jì)人員仍認(rèn)為“產(chǎn)品過了保修期就與自己和企業(yè)沒有關(guān)系了”。所以,必須改變產(chǎn)品設(shè)計(jì)的傳統(tǒng)觀念,要樹立“今天的產(chǎn)品,就是明天的廢品”的產(chǎn)品設(shè)計(jì)理念,從產(chǎn)品的性能、材料選擇、制造、使用、合理的產(chǎn)品壽命、報(bào)廢回收的整個(gè)過程來看待現(xiàn)在正進(jìn)行的產(chǎn)品設(shè)計(jì),尤其是考慮產(chǎn)品報(bào)廢后的回收性,進(jìn)行綜合平衡和決策,樹立全新的綠色產(chǎn)品設(shè)計(jì)理念。
??? (3) 對(duì)報(bào)廢產(chǎn)品的重新認(rèn)識(shí)。當(dāng)今社會(huì),科學(xué)技術(shù)發(fā)展很快,新產(chǎn)品層出不窮,產(chǎn)品的有效壽命周期明顯縮短,很多產(chǎn)品不是因?yàn)椴荒苁褂?,而是由于性能落后或僅僅由于外觀老舊而報(bào)廢。雖然可以花錢買新的,但被廢棄的不僅是報(bào)廢的產(chǎn)品,而且還有廢棄產(chǎn)品中所包含的資源。所以,綠色設(shè)計(jì)強(qiáng)調(diào)對(duì)“物理報(bào)廢”和“性能報(bào)廢”產(chǎn)品的回收和再利用。為此,要在產(chǎn)品設(shè)計(jì)的各個(gè)環(huán)節(jié)上綜合考慮對(duì)產(chǎn)品整個(gè)壽命周期的影響,對(duì)產(chǎn)品技術(shù)的發(fā)展有科學(xué)的預(yù)測(cè),在現(xiàn)有產(chǎn)品、儲(chǔ)備產(chǎn)品和研發(fā)產(chǎn)品之間有合理的技術(shù)繼承和聯(lián)系,充分考慮由于產(chǎn)品款式、技術(shù)升級(jí)等因素引起的產(chǎn)品報(bào)廢,使產(chǎn)品具有合理的使用壽命,而不一味地追求產(chǎn)品的經(jīng)久耐用。同時(shí),在設(shè)計(jì)中,廣泛運(yùn)用現(xiàn)代的設(shè)計(jì)技術(shù),如采用系列化、模塊化和標(biāo)準(zhǔn)化設(shè)計(jì)技術(shù),在產(chǎn)品設(shè)計(jì)中考慮產(chǎn)品零部件的技術(shù)和結(jié)構(gòu)的繼承性[8],為產(chǎn)品在報(bào)廢后的再制造奠定技術(shù)基礎(chǔ)。運(yùn)用面向拆卸的設(shè)計(jì)技術(shù),注意考慮產(chǎn)品的裝拆結(jié)構(gòu)設(shè)計(jì),方便裝拆。同時(shí),還應(yīng)考慮對(duì)一些產(chǎn)量大、使用時(shí)間長的產(chǎn)品,在技術(shù)進(jìn)步后,如何對(duì)已銷售的產(chǎn)品進(jìn)行合理的、較為經(jīng)濟(jì)的改裝,以提高產(chǎn)品使用性能的設(shè)計(jì)方法,例如像家用空調(diào)、電冰箱等產(chǎn)品就是屬于這種情況。由于技術(shù)進(jìn)步,現(xiàn)在產(chǎn)品的耗電量較前幾年已經(jīng)明顯降低,如前幾年普通電冰箱24h耗電量為1kWh左右,但現(xiàn)在可以達(dá)到0.4kWh左右,與現(xiàn)在新的節(jié)能型電冰箱相比,大量還在使用的老電冰箱就像電老虎一樣每天都在大量地消耗寶貴的電力。但由于這些老冰箱不能以較為方便的方式和用戶能接受的價(jià)格實(shí)現(xiàn)節(jié)能方面的改裝,依然會(huì)在若干年內(nèi)繼續(xù)使用這些棄之可惜的冰箱,并為它們多使用的電付錢,造成社會(huì)資源的巨大浪費(fèi)。從政府的角度講,如何在政策上大力鼓勵(lì)和扶持對(duì)報(bào)廢產(chǎn)品的再制造是值得研究的。
1.3 課題來源
面對(duì)目前提倡的綠色制造特有這樣的想法:利用有限的資源以及現(xiàn)有的技術(shù)設(shè)計(jì)出一種CA6140車床尾座體,使其制造成本降低、實(shí)用度提高、且容易制造。
下面一章我將對(duì)我的設(shè)計(jì)作出具體的闡述。
第二章 設(shè)計(jì)介紹
2.1材料的選用
根據(jù)中心架的特點(diǎn)以及對(duì)材料的要求,所以我選用的材料為:35#、45#Q235A、HT150以及ZQSnCu6-6-3。
2.2 中心架總成
圖一
如圖一所示本中心架最大夾件直徑為φ350,其主要配件為:圓銷、特厚螺母、活結(jié)螺栓、墊圈、銷軸、螺母、法蘭、螺釘、錐銷、絲桿、軸承、套筒、定位銷、軸、擋圈、錐銷鎖緊擋圈。其中部分利用現(xiàn)有的標(biāo)準(zhǔn)配件,如:GB 68-85、GB 117-86、GB 6170-86等,具體的配件位置件裝配總圖。
2.3 部件組織的注意點(diǎn)
焊接件上體,筋板焊前周邊加工,點(diǎn)焊后連續(xù)焊接,焊后應(yīng)無焊接缺陷如圖二
圖二
所有需要熱處理的工件,熱處理必須達(dá)到要求,嚴(yán)格按照熱處理工藝進(jìn)行處理。
謝 辭
這次設(shè)計(jì)的完成,無疑地需要很多人的幫助。首先要感謝的是指導(dǎo)老師,他不但幫助我解決有關(guān)調(diào)研方面遇到的棘手問題,還幫我解決了許多以前課程學(xué)習(xí)時(shí)就沒有搞清的問題。當(dāng)然我還要感謝許多給過我?guī)椭耐瑢W(xué)們,沒有他們的熱心協(xié)助,我是無法完成這次設(shè)計(jì)任務(wù)的。
最后我也要向相關(guān)老師致謝,沒有他們的諄諄教導(dǎo),我就沒有一定的理論基礎(chǔ),更不用說能夠搞好這次設(shè)計(jì)。
再次感謝諸位!
參 考 文 獻(xiàn)
1.呂惠瑛等編·機(jī)械設(shè)計(jì)基礎(chǔ)·上海:交通大學(xué)出版社,2001
2.王廣生等編·熱處理手冊(cè)·第三版·北京:機(jī)械工藝出版社,2001
3.曾正明主編·機(jī)械工程材料手冊(cè)·第六版·北京:機(jī)械工藝出版社,2003
4.王文斌等編·機(jī)械設(shè)計(jì)手冊(cè)·新版·北京:機(jī)械工業(yè)出版社,2004
5.陳宏鈞主編·實(shí)用機(jī)械加工工藝手冊(cè)·第二版·北京:機(jī)械工業(yè)出版社,2003
Proceedings ofthe2006 IEEE/RSJ International Conference on Intelligent Robots and Systems October9- 15, 2006, Beijing, China ANovelModularFixtureDesignandAssemblySystem BasedonVR PengGaoliang, LiuWenjian SchoolofMechatronicsEngineering HarbinInstituteofTechnology Harbin, 150001, China pgl7782a Abstract - Modular fixtures are one oftheimportant aspects ofmanufacturing. This paper presents a desktop VR system for modular fixture design. The virtual environmentis designed and the design procedure is proposed. It assists the designer to make the feasible design decisions effectively and efficiently. A hierarchical data model is proposed to represent the modular fixture assembly. Based on this structure, the user can manipulate the virtual models precisely in VE during the design and assembly processes. Moreover, the machining simulation for manufacturing interaction checking is discussed and implemented. Finally, the case study has demonstrated the functionality of the proposed system. Compared with the immersive VR system, the proposed system has offered an affordable andportable solutionformodularfixtures design. Index Terms - Modularfixture, desktop VR, assembly design, machiningsimlulation. I. INTRODUCTION Modular fixtures are one of the important aspects of manufacturing. Proper fixture design is crucial to product quality in terms of precision, accuracy, and finish of the machined part. Modular fixture is a system of interchange- eable and highly standardized components designed to securely and accurately position, hold, and support the workpiece throughout the machining process 1. Tradition- ally, fixture designers rely on experience or use trial-and- error methods to determine an appropriate fixturing scheme. With the advent of computer technology, computer aided design has been prevalent in the area of modular fixture design. In general, the associated fixture design activities, namely setup planning, fixture element design, and fixture layout design are often dealt with at the downstream end of the machine tool development life-cycle. These practices do not lend themselves well to the bridging of design and manufacturing activities. Forexample, very few systems have incorporated the functionality of detecting machining interference. This leads to a gap between the fixture design andmanufacturing operationswheretheaspectofcutterpaths is not considered during the design stage 2. As a result, re- designcannotbeavoidedwhenthecutterisfoundtointerfere with the fixture components in the manufactu- ring set-up. Therefore, in orderto bring machining fixture design into the arenaofflexiblemanufacturing, amoresystematicandnatural designenvironmentisrequired. As a synthetic, 3D, interactive environment typically generated by a computer, VR has been recognized as a very powerful human-computer interface for decades 4. VR holds great potential in manufacturing applications to solve problems before being employed in practical manufacturing thereby preventing costly mistakes. The advances in VR technology in the last decade have provided the impetus for applying VR to different engineering applications such as product design 5, assembly 6, machining simulation 7, andtraining 8. The goal ofthis paper is to develop a VR- basedmodular fixtures design system (VMJFDS). This is the firststepto develop anintegratedandimmersiveenvironment for modular fixture design. This application has the advantages of making the fixture design in a natural and instructive manner, providing better match to the working conditions, reducing lead-time, and generally providing a significantenhancementoffixtureproductivityandeconomy. II. OVERVIEWOFTHEPROPOSEDSYSTEM The system architecture of the proposed desktop VR systemismodularisedbasedonthefunctionalrequirements of thesystem,whichisshowninFig.1. Atthesystemlevel,three modules of proposed system, namely, Graphic interface (GUI), Virtual environment (VE) and Database modules are designed. For each ofthe modules, a set ofobjects has been identified to realize its functional requirements. The detailed objectdesignandimplementation are omittedfromthispaper. Instead, the briefdescription ofthese three modules is given below. 1) Graphic Interface (GUI): The GUI is basically a friendly graphic interface that is used to integrate the virtual environmentandmodularfixturedesignactions. 2) Virtual environment (VE): TheVEprovidestheusers with a 3D display for navigating and manipulating the models of modular fixture system and its components in the virtual environment. As shown in Fig. 1, the virtual environment module comprises two parts, namely assembly design environment andmachiningsimulationenvironment. Theuser selects appropriate elements andputs downthese elements on the desk in the assembly design area. Then he assembles the selected elements one by one to build up the final fixture systemwiththeguidanceofthesystem. 1-4244-0259-X/06/$20.00 C)2006IEEE 2650 Authorized licensed use limited to: Nanchang University. Downloaded on December 20, 2009 at 22:44 from IEEE Xplore. Restrictions apply. Fig.1.OverviewofthedesktopVRbasedmodularfixturedesignsystem. 3) Database: The database deposit all of the models of environment and modular fixture elements, as well as the domain knowledge and useful cases. There are 5 databases shown in Fig.1. Among them, knowledge & rule base governing all fixture planning principles forms the brains of thesystem. III. PROCEDUREOFMODULARFIXTUREDESIGN In this section, an instructive modular fixture design procedure within VE is presented. Besides the 3D depth that the users feel and the real-world like operation process, this procedure features intelligence and introduction. During the design process, some useful cases and suggestion will be presented to the user for reference based on intelligent inference method such as Case based reasoning (CBR) and Rule based reasoning (RBR). Further more, relative knowledge andrules arepresented ashelppages thattheuser caneasilybrowsedduringthedesignprocess. Overview of modular fixture design process is summarized in Fig. 2. After the VE environment is initialed andthe workpiece is loaded, the first step is fixtureplanning. Inthis step, theuserfirstdecides thefixturing scheme, thatis specifies the fixturing faces of the workpiece interactively. Forhelptheusersdecision-making, someusefulcasesaswell as their fixturing scheme will be presented via the automatic CBR retrieval method. Once the fixturing faces are selected, theusermaybepromptto specifythefixturingpoints. Inthis task, somesuggestions andrulesaregiven. After the fixturing planning, the next step is fixture FUs design stage. In this stage, the user may be to select suitable fixture elements andassembletheseindividualparts into FUs. According to the spatial information ofthe fixturingpoints in relation to the fixture base and the workpiece, some typical FUs and suggestions may be presented automatically. These willbehelpfulfortheuser. AftertheplanningandFUs design stage, the next stage is interactively assembling the designed fixtureFUstoconnecttheworkpiecetothebaseplate. When the fixture configuration is completed, the result will be checked and evaluated within the machining environment. The tasks executed in this environment including assembly planning, machining simulation, and fixture evaluation. Assemblyplanning isusedto gain optimal assembly sequence and assembly path of each component. Machining simulation is responsible for manufacturing interaction detection. Fixture evaluation will check and evaluate the design result. In conclusion, the whole design process isinanaturemannerforthebenefitofVE. Moreover, the presented information of suggestion and knowledge can advise the user on how to make decisions ofthe best design selection. IV. ASSEMBLYMODELINGOFMODULARFIXTURE A. Modularfixturestructureanalysis A functionalunit(FU) is acombination offixture elements to provide connectionbetweenthebaseplate and aworkpiece 11. Generally, modularfixture structuremaybe dividedinto three functional units according to its basic structure characteristics, namely locating unit, clamping unit, and supporting unit. The number offixture elements in aFU may consist ofone or more elements, in which only one element serves as a locator, support or clamp. The major task ofthe modularfixture assembly is to selectthe supporting, locating, clamping and accessory elements to generate the fixture FUs toconnecttheworkpiecetothebaseplate. By analyzing the practical application ofmodular fixtures, it is found that the assembly ofmodular fixtures begins by selecting the suitable fixture elements to construct FUs, then subsequentlymountingtheseFUs onthebaseplate. Therefore, the FUs can be regarded as subassemblies ofmodular fixture system.Further,thestructureofmodularfixturesystemcanbe representedasahierarchalstructureasshowninFig.3. 2651 Authorized licensed use limited to: Nanchang University. Downloaded on December 20, 2009 at 22:44 from IEEE Xplore. Restrictions apply. UsefTa6 *T- siikg&Sugge lr,l Fixtui e Elemenets rUetrieval i0 Tools rKetrieval 4 Fig.2Modularfixturedesignprocedureinproposedsystem B. Hierarchically structured data modelfor modularfixture representation in VE It is common that the corresponding virtual environment may contain millions ofgeometric polygon primitives. Over thepastyears, anumberofmodel sub-division schemes, such asBSP-tree 10 andOctrees,havebeenproposedto organize largepolygonalmodels.However, formodular Ba 1I_ 1 Hsreplalte Bansepla1nte Elements *Locatng ElementsL,cating Units AccessoryEllements ClamnpingElemnents !ClampingUnits SupportingElemntsSupporting Ufnits Accessory Elements Fig. 3Hierarchical structureofmodularfixture system design applications, the scene is also dynamically changing, due to interactions. For example, in design process, the part object may change its spatial position, orientation and assembly relations. This indicates that a static representation, such as BSP-tree, is not sufficient. Further more, the above models can only represent the topology structure of fixture system in the component level. However, to the assembly relationship among fixture components, which refers to the mating relationship between assembly features that is not concerned. In this section, we present a hierarchically structuredandconstraint-baseddatamodelformodularfixture system representation, real-time visualization and precise 3D manipulationinVE. As shown in Fig.4, the high-level component based model is used for interactive operations involving assemblies or disassembles. It provides both topological structure and link relationsbetweencomponents. Theinformationrepresent- ed in the high-level model can be divided into two types, i.e. component objects and assembly relationships. Component objects can be a subassembly or a part. A subassembly consists of individual parts and assembly relationships betweentheparts. Component Level (Pt Part S Subassembly Assembly relationship Feature Level Ft3 Feature Feature mating relationship t- -t Polygon Level FZ-ll. Polygon Fig.4ThehierarchicalstructuredatamodelinVE Themiddle-levelfeaturebasedmodelisbuiltuponfeatures and feature constraints. In general, the assembly relationship often treated as the mating relationships between assembly features. Thus the featurebasedmodel isusedto describethe assembly relationship andprovides necessary information for spatial relationship calculating during assembly operation. In this model, only the feature relationships between two different components are considered. The relationship between features ofone element will be discussed in feature basedmodularfixtureelementmodelingbelow. The low-level polygon based model corresponds to the above two level models for real-time visualization and interaction. It describes the entire surface as an inter- connected triangular surface mesh. More about how the polygons organized of a single element will be discussed is thenextsection. C. Modularfixtureelementsmodeling As we know, in VE, the part is only represented as a number ofpolygon primitives. This result in the topological 2652 Authorized licensed use limited to: Nanchang University. Downloaded on December 20, 2009 at 22:44 from IEEE Xplore. Restrictions apply. relations- hips and parametric information are lost during the translation process of models from CAD systems to VR systems. However, this important information is necessary in design and assembly process. In order to fulfill the requirements, we present a modeling scheme for fixture elementsrepresentationinthissection. The modular fixture elements are pre-manufactured parts withstandarddimensions. Afterthefixturingschemedesigned, the left job is to select suitable standard elements and assemblethese elements to formafixture systeminafeasible andeffectivemanner. Therefore, intheproposed system, only the assembly features of the fixture elements need to be considered. Inthispaperanassemblyfeature isdefinedas apropertyof afixture element, whichprovidesrelatedinformationrelevant to modular fixture design and assembly/disassembly. The following eight function faces are defined as assembly featuresoffixtureelements: supportingfaces, supportedfaces, locating holes, counterbore holes, screw holes, fixing slots, andscrewbolts. Besidestheinformation aboutthefeaturelike typeanddimension, otherparameters, i.e. therelativeposition andorientationofthe featureintheelements localcoordinate system are recorded with the geometric model in the fixture element database. When one element assembles with another, the information aboutthematedfeatures isretrieved andused to decide the spatial relationship ofthe two elements. More information about the assembly features and their mating relationship arediscusseddetailedinRef 1. D. Constraintbasedfixtureassemblyin VE 1)Assemblyrelationshipbetweenfixtureelements Mating relationships have been used to define assembly relationships between part components in the field of assembly. According to the assembly features summarized in the above section, there are fivetypes ofmating relationships between fixture elements. Namely against, fit, screw fit, across, andT-slotfit,which are illustrated inFig. 5. Based on these mating relationships, we can reason the possible assemblyrelationshipofanytwoassembledfixtureelements. 2)Assemblyrelationshipreasoning Ingeneral, the assemblyrelationship oftwo assembledpart isrepresented as thematedassembly featurepairs ofthem. In the above section, we defined five basic mating relationships between fixture elements. Therefore, it is enabled to decide the possible assembly relationships through finding the possible mating assembly feature pairs. These possible assembly relationships are saved in assembly relationships database(ARDB)forfixtureassemblyinnextstage. However, when the fixture is complicated and the numbers ofcomposite fixture elements is large, the possible assembly relationships are too much to take much time for reasoning andtreating. To avoidthis situation, wefirstdecide the possible assembled elements pairs. That is to avoid reasoning the assembly relationship between a clamp andthe baseplate, for they never were assembled together. In this stage, some rules are utilized to find the possible assembled elementspairs. The algorithm of assembly relationships reasoning is similar to what discussed in Ref 12. Thus the detailed descriptionofthealgorithmisomittedfromthispaper. (a) AIlai.ns .2 l.I.F LIi I7 F d) Asicmie 1f-isxkt Elmn Fig. 5Fivebasicmatingrelationshipsbetweenfixtureelements 3)Constraint-basedfixtureassembly Aftercarrying outthe assemblyrelationships reasoning, all possible assembly relationships ofthe selected elements are establishedandsavedinARDB. Basedontheserelationships, the trainee can assemble these individual parts to a fixture system. This section is about the discussion of interactive assembly operation in VE. The process ofa single assembly operation is presented in Fig.5 and illustrated by two simple partsassemblyasshowninFig.6. In general, the assembly operation process is divided into three steps, namely assembly relationship recognizing, constraint analysis and applying, constraint-based motion. Firstly, the trainee selects an element and moves it to the assembled component. Once an inference between the assembling and assembled component is detected during the moving,the inferredfeatures is checked. Ifthetwo features is one of the assembly relationships in ARDB, they will be highlighted and will await the users confirmation. Once it is confirmed, the recognized assembly relationship will be appliedby constraint analyzing and solving, that is adjustthe translationandorientationoftheassemblingelementtosatisfy the position relationship ofthese two components, as well as applythenew constrainttotheassemblingelement.Whenthe new constraint is applied, the motion of the assembling element will be mapped into a constraint space. This is done bytransferring 3Dmotiondatafromtheinputdevicesintothe allowable motions ofthe object. The constraint-based motion notonlyensuresthattheprecisepositionsofacomponentcan be obtained, but also guarantee that the existing constraints will not be violated during the future operations. The assembling element will reach to the final position through succession assembly relationship recognizing and constraint applying. 2653 Ii 1-11 4- (b) F.t Authorized licensed use limited to: Nanchang University. Downloaded on December 20, 2009 at 22:44 from IEEE Xplore. Restrictions apply. NO Assembly relationship Iis possible checking elatioohship? Fig. 6Processofassemblyconstraintestablishment No V. MACHINING SIMULATION A. Manufacturinginteractions During the machining process, there are many types of manufacturing interactions associated with the fixture may occur. These interactions can be divided into two broad categories illustrated below, namely static interactions and dynamicinteractions. 1) Static interactions refer to the interference between fixture components, the interference between fixture components and machine tool, and the interference between fixture components andmaching feature ofworkpiece during theworkpiecesetup. 2)Dynamicinteractionsrefertothetool-fixtureinteractions, which occur within a single operation when the tool and the fixtureusedinthatoperationmaycollideduringcutting. Generally, the aspects of machining process and cutter paths are not considered duringthe fixture design stage. As a result, these interactions may often occur during the practical manufacturing. Thus the human machinists have to spend muchoftheirtimeidentifyingtheseinteractions andresolving them. Itis oftenresults inmodification orre-designoffixture system. Thatistediousandtimecostly. B.Interferencedetection Although the currently commercial software, like VERICUT, can simulates NC machining to detect tool path errors and inefficient motion prior to machining an actual workpiece. It is available to eliminate errors that could ruin the part, damage the fixture, break the cutting tool, or crash the machine during the part programming stage. However, these software are expensive and oriented to NC program- mertherebynotsuitableforfixturedesigners. During the fixture design stage, it should be ensured that the associated fixture interactions can be avoided. In this system, after the fixture configuration is complete, the machining simulation module is presented to the user to identifytheinteractionsandresolvethem. Within the machining simulation environment, the 3D digitalmodelofmachinetoolispresented. The canassemble the fixture components on the work bench and setup the workpiece, just as what the machining engineers do in the actual site. During the setup, the fixture components and the workpiece are move to their assembly position under manipulation. Theinterferencecheckingmoduleiscarriedout. Ifinterference occurs, the inferred objectwill be highlight. It is p
收藏