【教學(xué)設(shè)計(jì)】《基本不等式及其應(yīng)用》(上教版)

上傳人:奇異 文檔編號:49061592 上傳時(shí)間:2022-01-17 格式:DOCX 頁數(shù):5 大小:69.89KB
收藏 版權(quán)申訴 舉報(bào) 下載
【教學(xué)設(shè)計(jì)】《基本不等式及其應(yīng)用》(上教版)_第1頁
第1頁 / 共5頁
【教學(xué)設(shè)計(jì)】《基本不等式及其應(yīng)用》(上教版)_第2頁
第2頁 / 共5頁
【教學(xué)設(shè)計(jì)】《基本不等式及其應(yīng)用》(上教版)_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

12 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《【教學(xué)設(shè)計(jì)】《基本不等式及其應(yīng)用》(上教版)》由會員分享,可在線閱讀,更多相關(guān)《【教學(xué)設(shè)計(jì)】《基本不等式及其應(yīng)用》(上教版)(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、《基本不等式及其應(yīng)用》 教學(xué)目標(biāo) 【知識與能力目標(biāo)】 1、掌握兩個(gè)基本不等式:(、)、(、為任意正數(shù)),并能用于解決一些簡單問題. 2、理解兩個(gè)基本不等式相應(yīng)的幾何解釋.初步理解代換的數(shù)學(xué)方法. 3、在公式的探求過程中,領(lǐng)悟數(shù)形結(jié)合的數(shù)學(xué)思想,進(jìn)一步體會事物之間互相聯(lián)系及一定條件下互相 轉(zhuǎn)化等辨證唯物主義觀點(diǎn). 【過程與方法目標(biāo)】 1 '掌握兩個(gè)基本不等式:(、)、(、為任意正數(shù)),并能用于解決一些簡單問題. 2、理解兩個(gè)基本不等式相應(yīng)的幾何解釋.初步理解代換的數(shù)學(xué)方法. 【情感態(tài)度價(jià)值觀目標(biāo)】 在公式的探求過程中,領(lǐng)悟數(shù)形結(jié)合的數(shù)學(xué)思想,進(jìn)一步體會事物之間互相聯(lián)系及一定條

2、件下互相轉(zhuǎn) 化等辨證唯物主義觀點(diǎn). 教學(xué)重難點(diǎn) 【教學(xué)重點(diǎn)】兩個(gè)基本不等式的知識發(fā)生過程和證明;基本不等式的應(yīng)用. 【教學(xué)難點(diǎn)】基本不等式的應(yīng)用 教學(xué)過程 新課引入 基本不等式J及其證明 基本不等式1的圖形解釋 匚二?圖形引入基本不等式2 I二, 基本不等式2的證明 =基本不等式的簡單應(yīng)用(探索) 二課堂小結(jié) 作業(yè)布置(含課外思考) 一、新課引入 在客觀世界中,有些量的大小關(guān)系是永遠(yuǎn)成立的 例如,、()、三角形任意兩邊之和大于第三邊、三角形任意兩邊之差小于第三邊等等 二、新課講授 1 '基本不等式1 基本不等式1對于任意實(shí)數(shù)和,有,當(dāng)且僅當(dāng)時(shí)等號成立

3、 (1 ) 基本不等式1的證明 證明:因?yàn)?,所? 當(dāng)時(shí),.當(dāng)時(shí),? 所以,當(dāng)且僅當(dāng)時(shí),的等號成立? (2) 基本不等式1的幾何解釋 ①解釋1 邊長為的正方形面積與邊長為的正方形面積之和大于等于以 、為鄰邊長的矩形面積的2 倍(當(dāng)且僅當(dāng)時(shí)等號成立)? 已知正方形,分別在邊、邊上取點(diǎn)、 ,使得?分別過點(diǎn)、作、,垂足為、?和交于點(diǎn)? 由幾何畫板進(jìn)行動(dòng)態(tài)計(jì)算演示,得到陰影部分的面積 剩余部分的面積,當(dāng)且僅當(dāng)點(diǎn)移 至中點(diǎn)時(shí)等號成立? ②解釋2 某屆數(shù)學(xué)大會的會徽怎樣的? 三國時(shí)期趙爽在《勾股方圓圖注》中對勾股定理的證明可用現(xiàn)代數(shù)學(xué)表述為: 如圖所示,以、、分別表示勾、股、弦

4、,那么,表示“弦圖”中兩塊“朱實(shí)”的面積,表示“中黃 實(shí)”的面積.于是,從圖中可明顯看出,四塊“朱實(shí)”的面積加上一個(gè)“中黃實(shí)”的面積就等于以為邊長的 正方形“弦實(shí)”的面積,即 這就是勾股定理的一般表達(dá)式. . 由圖可知:以為邊長的正方形“弦實(shí)”的面積四塊“朱實(shí)”的面積即,(當(dāng)且僅當(dāng)時(shí)等號成立) 2、基本不等式2 觀察下面這個(gè)幾何圖形.已知半圓,是半圓上任一點(diǎn),是直徑. 過作,垂足為.顯然有線段的長度大于等于垂線段的長度.設(shè),,請用、來表示上述這個(gè)不等關(guān)系.(即, 當(dāng)且僅當(dāng)時(shí)等號成立.)基本不等式2對于任意正數(shù)、,有,當(dāng)且僅當(dāng)時(shí)等號成立. 我們把和分別叫做正數(shù)、的算術(shù)平均數(shù)和幾何平

5、均數(shù).因此基本不等式2也可敘述為:兩個(gè)正數(shù)的算 術(shù)平均數(shù)不小于它們的幾何平均數(shù). (1 )基本不等式2的證明證明:因?yàn)?,所? 當(dāng)時(shí),.當(dāng)時(shí),.所以,當(dāng)且僅當(dāng)時(shí),的等號成立.另證:因?yàn)?、為正?shù),所以、均存在. 由基本不等式1,得,當(dāng)且僅當(dāng)時(shí)等號成立 即,當(dāng)且僅當(dāng)時(shí)等號成立 2)基本不等式2的擴(kuò)充 對于任意非負(fù)數(shù)、,有,當(dāng)且僅當(dāng)時(shí)等號成立例1已知,求證:,并指出等號成立的條件.證 明:因?yàn)椋?、同號,并有? 所以,.當(dāng)且僅當(dāng),即時(shí)等號成立. [說明] 1、體會代換的方法. 2、用語言表述上述結(jié)論. 3、思考:若,則代數(shù)式的取值范圍是什么?(,當(dāng)且僅當(dāng)時(shí)等號成立 .)

6、3、兩個(gè)基本不等式的簡單應(yīng)用 (1 )幾何問題 例2在周長保持不變的條件下,何時(shí)矩形的面積最大?猜想:由幾何畫板電腦演示得出. 解:設(shè)矩形的長、寬分別為、(、)且(定值),則同樣周長的正方形的邊長為.矩形面積,正方形面積 由基本不等式2,得,又由不等式的性質(zhì)得,即.由題意,(定值),所以(定值).當(dāng)且僅當(dāng),即矩 形為正方形時(shí),矩形的面積最大. [說明]當(dāng)兩個(gè)正數(shù)的和為定值時(shí),它們的積有最大值.例如,若時(shí),有,當(dāng)且僅當(dāng)時(shí)等號成立.(事實(shí) 上,由(),得,當(dāng)且僅當(dāng)時(shí)等號成立.)思考題 (1 )通過查閱資料,了解這兩個(gè)基本不等式其它的幾何解釋 (2)在面積保持不變的條件下,正方形的周長

7、與矩形的周長之間有什么大小關(guān)系? (3)整理一些基本不等式的常用變式并給出證明 教學(xué)反思 本堂課是《基本不等式及其應(yīng)用》的第一節(jié)課,在學(xué)生熟練掌握不等式性質(zhì)的前提下,介紹了兩個(gè)基本 不等式及其初步應(yīng)用.盡管對于基本不等式而言證明不困難,但它卻是今后學(xué)習(xí)諸如不等式證明、求函數(shù) 最值等時(shí)的有力工具,因此牢固掌握這兩個(gè)基本不等式是十分重要的. 為了避免單純地講授基本不等式.,本堂課借助計(jì)算機(jī)軟件,采用以幾何圖形輔助代數(shù)知識講授,由數(shù) 到形,再由形到數(shù)的設(shè)計(jì)思路,將兩個(gè)基本不等式的證明、解釋及其在應(yīng)用時(shí)的注意點(diǎn)穿插其中,并通過 幾何解釋加強(qiáng)對基本不等式的感性認(rèn)識,從而達(dá)到較好的教學(xué)效果.整堂課

8、主要采用“觀察一一猜測一 -歸納一一證明”的探索流程,讓學(xué)生通過觀察兩式的大小關(guān)系、幾何圖形中線段的長度來猜測相應(yīng)的 結(jié)論,最后再由討論、歸納得出兩個(gè)基本不等式. 在教學(xué)過程中始終“關(guān)注學(xué)生的思維發(fā)展” .例如,將教科書上例1的證明題改成了一道探索題,通 過對有關(guān)過程的設(shè)計(jì),進(jìn)而培養(yǎng)學(xué)生自行探索、解決問題的能力.此外,為了培養(yǎng)學(xué)生“觀察一一猜測” 的能力,借用了幾何畫板的有關(guān)功能,幫助學(xué)生進(jìn)行有關(guān)的猜想與驗(yàn)證,使學(xué)生始終處于自我發(fā)現(xiàn)、自我探 索的過程中. 通過整堂課的教學(xué),不僅要求學(xué)生對有關(guān)知識點(diǎn)的掌握,此外還對應(yīng)初步理解代換的數(shù)學(xué)方法有一定 要求,并在公式的探求過程中,繼續(xù)領(lǐng)悟數(shù)形結(jié)合的數(shù)學(xué)思想.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!