2020年中考數(shù)學基礎題型提分講練 專題26 應用能力提升(含解析)

上傳人:Sc****h 文檔編號:89468614 上傳時間:2022-05-13 格式:DOCX 頁數(shù):19 大?。?51.54KB
收藏 版權申訴 舉報 下載
2020年中考數(shù)學基礎題型提分講練 專題26 應用能力提升(含解析)_第1頁
第1頁 / 共19頁
2020年中考數(shù)學基礎題型提分講練 專題26 應用能力提升(含解析)_第2頁
第2頁 / 共19頁
2020年中考數(shù)學基礎題型提分講練 專題26 應用能力提升(含解析)_第3頁
第3頁 / 共19頁

下載文檔到電腦,查找使用更方便

26 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020年中考數(shù)學基礎題型提分講練 專題26 應用能力提升(含解析)》由會員分享,可在線閱讀,更多相關《2020年中考數(shù)學基礎題型提分講練 專題26 應用能力提升(含解析)(19頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題26 應用能力專題 (時間:90分鐘 滿分120分) 一、選擇題(每小題3分,共36分) 1.(2020安徽初三)某零件長40厘米,若該零件在設計圖上的長是2毫米,則這幅設計圖的比例尺是( ?。? A.1:2000 B.1:200 C.200:1 D.2000:1 【答案】B 【解析】因為2毫米=0.2厘米,則0.2厘米:40厘米=1:200; 所以這幅設計圖的比例尺是1:200.故選B. 【點睛】此題主要考查比例尺的計算方法,解答時要注意單位的換算. 2.(2019廣東初二期中)如圖,從一個大正方形中裁去面積為30cm2和48cm2的兩個小正方形,則余下部分的面積為

2、(  ) A.78 cm2 B. cm2 C.12 cm2 D.24 cm2 【答案】D 【解析】 解:從一個大正方形中裁去面積為30cm2和48cm2的兩個小正方形, 大正方形的邊長是(+)cm, 留下部分(即陰影部分)的面積是:(+)2-30-48= cm2 故選D. 【點睛】 本題主要考查的是二次根式的加減法運算,屬于基礎題目.解決本題的關鍵是: 首先求出大正方形的邊長,然后求出面積, 再減去兩個小正方形的面積,即可求得. 3.(2019湖南雅禮中學初一期中)《九章算術》是中國傳統(tǒng)數(shù)學名著,其中記載:“今有牛五、羊二,直金十兩;牛二、羊五,直金八兩.問牛、羊各直

3、金幾何?”譯文:“假設有5頭牛,2只羊,值金10兩;2頭牛,5只羊,值金8兩.問每頭牛、每只羊各值金多少兩?”若設每頭牛、每只羊分別值金x兩、y兩,則可列方程組為(  ) A. B. C. D. 【答案】A 【解析】 由題意可得, , 故選A. 【點睛】本題考查由實際問題抽象出二元一次方程組,解答本題的關鍵是明確題意,找準等量關系列出相應的方程組. 4.(2019廣東初三期中)已知點C是線段AB的黃金分割點(AC>BC),AB=4,則線段AC的長是( ?。? A. B. C. D. 【答案】A 【解析】 解:根據(jù)題意得AC=AB=×4=. 故選:A. 【點睛】 此題

4、主要考查對應線段的應用,解題的關鍵是熟知黃金分割的比例值. 5.(2019山東初三學業(yè)考試)在陽光下,一名同學測得一根長為1米的垂直地面的竹竿的影長為0.6米,同時另一名同學測量樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在教學樓的第一級臺階上,測得此影子長為0.2米,一級臺階高為0.3米,如圖所示,若此時落在地面上的影長為4.42米,則樹高為( ) A.6.93米 B.8米 C.11.8米 D.12米 【答案】B 【解析】 根據(jù)題意畫出圖形如圖所示,其中AB為樹高,EH為樹影在第一級臺階上的影長,AE為樹影在地上部分的長,ED的長為臺階高,并且由光沿直線傳播的性質

5、可知AF即為樹影在地上的全長, ∵, ∴EH=0.3×0.6=0.18, ∴AF=AE+EH+HF=4.42+0.18+0.2=4.8, ∵, ∴AB==8(米), 故選B. 【點睛】 本題考查了直角三角形的有關知識,同時滲透光學中光的傳播原理,根據(jù)題意構造直角三角形是解決本題的關鍵. 6.(2020山東初三期末)如圖是小玲設計用手電來測家附近“新華大廈”高度的示意圖.點處放一水平的平面鏡,光線從點出發(fā)經(jīng)平面鏡反射后剛好射到大廈的頂端處,已知,且測得米,米,米,那么該大廈的高度約為( ) A.米 B.米 C.米 D.米 【答案】B 【解析】 ∵光線從點出發(fā)經(jīng)

6、平面鏡反射后剛好射到大廈的頂端處 ∴ ∵ ∴ ∴ ∴ ∵米,米,米 ∴ ∴CD=16(米) 【點睛】 本題考查的知識點是相似三角形的性質與判定,通過判定三角形相似得到對應線段成比例,構成比例是關鍵. 7.(2019浙江初三期末)如圖,在△ABC中,BC=8,高AD=6,點E,F(xiàn)分別在AB,AC上,點G,F(xiàn)在BC上,當四邊形EFGH是矩形,且EF=2EH時,則矩形EFGH的周長為( ?。? A. B. C. D. 【答案】C 【解析】 ∵EF∥BC, ∴△AEF∽△ABC, ∴, ∵EF=2EH,BC=8,AD=6, ∴ ∴EH=, ∴EF=, ∴矩

7、形EFGH的周長= 故選:C. 【點睛】 本題考查了相似三角形的應用,根據(jù)相似三角形對應邊成比例建立方程是解題的關鍵. 8.(2020安徽初三期末)如圖,一同學在湖邊看到一棵樹,他目測出自己與樹的距離為20m,樹的頂端在水中的倒影距自己5m 遠,該同學的身高為1.7m ,則樹高為( ).  A.3.4m B.4.7 m C.5.1m D.6.8m 【答案】C 【解析】 解:由題意可得:∠BCA=∠EDA=90°,∠BAC=∠EAD, 故△ABC∽△AED, 由相似三角形的性質,設樹高x米, 則, ∴x=5.1m. 故選:C. 【點睛】 本題考查相似三

8、角形的應用,關鍵是由入射光線和反射光線與鏡面的夾角相等,得出兩個相似三角形. 9.(2019廣東初三期中)在一次初三學生數(shù)學交流會上,每兩名學生握手一次,統(tǒng)計共握手253次.若設參加此會的學生為x名,據(jù)題意可列方程為( ?。? A.x(x+1)=253 B.x(x﹣1)=253 C.x(x+1)=253 D.x(x-1)=253 【答案】D 【解析】 解:參加數(shù)學交流會的學生為x名,每個學生都要握手(x-1)次, 因此列方程為x(x-1)=253, 故選D. 【點睛】 本題考查用一元二次方程解決握手次數(shù)問題,得到總次數(shù)的等量關系是解決本題的關鍵. 10.(2019福建初三期中

9、)某廠一月份生產(chǎn)某機器100臺,計劃三月份生產(chǎn)144臺.設二、三月份每月的平均增長率為x,根據(jù)題意列出的方程是(  ) A.100(1+x)2=144 B.100(1﹣x)2=144 C.144(1+x)2=100 D.144(1﹣x)2=100 【答案】A 【解析】 解:設二,三月份每月平均增長率為x, 100(1+x)2=144. 故選:A. 【點睛】 本題考查了一元二次方程的實際應用中的增長率問題,解題的關鍵是掌握增長率的意義. 11.(2018河南初三期中)如圖,某小區(qū)計劃在一塊長為32m,寬為20m的矩形空地上修建三條同樣寬的道路,剩余的空地上種植草坪.若草坪的面

10、積為570m2,道路的寬為xm,則可列方程為( ?。? A.32×20﹣2x2=570 B.32×20﹣3x2=570 C.(32﹣x)(20﹣2x)=570 D.(32﹣2x)(20﹣x)=570 【答案】D 【解析】 解:設道路的寬為xm,根據(jù)題意得:(32-2x)(20-x)=570, 故選D. 【點睛】 本題考查的知識點是由實際問題抽象出一元二次方程,解題關鍵是利用平移把不規(guī)則的圖形變?yōu)橐?guī)則圖形,進而即可列出方程. 12.(2019四川初三)如圖,一艘巡邏艇航行至海面B處時,得知正北方向上距B處20海里的C處有一漁船發(fā)生故障,就立即指揮港口A處的救援艇前往C處營救.

11、已知C處位于A處的北偏東45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之間的距離.(結果精確到0.1海里,參考數(shù)據(jù))( ?。? A.7.3海里 B.10.3海里 C.17.3海里 D.27.3海里 【答案】B 【解析】 作AD⊥BC,垂足為D, 由題意得,∠ACD=45°,∠ABD=30°, 設CD=x,在Rt△ACD中,可得AD=x, 在Rt△ABD中, BD==x, 又∵BC=20,即x+x=20, 解得:x=10(﹣1) ∴AC=≈10.3(海里), 即:A、C之間的距離為10.3海里, 故選B. 【點睛】 本題考查了解直角三角形的應用,解

12、答本題的關鍵是根據(jù)題意構造直角三角形,將實際問題轉化為數(shù)學模型進行求解. 二、填空題(每小題3分,共18分) 13.(2019重慶巴川中學校初一期中)在某月內,李老師要參加三天的學習培訓,現(xiàn)在知道這三天日期的數(shù)字之和是42.且這三天是連續(xù)三周的周六,則培訓的第一天的日期的數(shù)字是____. 【答案】7 【解析】 設培訓的第一天日期是x日,則另外兩天分別是(x+7)日和(x+14)日 根據(jù)題意可得,x+x+7+x+14=42 解得:x=7 故答案為7. 【點睛】 本題考查的是一元一次方程在實際生活中的應用,難度適中,解題關鍵是設出每一天培訓的日期的數(shù)字. 14.(2019

13、廣東中山一中初三) 如圖所示,一架梯子AB長2.5米,頂端A靠在墻AC上,此時梯子下端B與墻角C的距離為1.5米,當梯子滑動后停在DE的位置上,測得BD長為0.9米.則梯子頂端A沿墻下移了______米. 【答案】1.3 【解析】 解:由題意得:米,米 ∴在中,AC2=AB2-BC2=2.52-1.52=4, ∴AC=2米, ∵BD=0.9米, ∴CD=2.4米. ∵ ∴在中,EC2=ED2-CD2=2.52-2.42=0.49, ∴EC=0.7米, ∴AE=AC-EC=2-0.7=1.3米. 故答案為:1.3. 【點睛】 考查了勾股定理的應用,抓住梯子的長度不

14、變并應用勾股定理計算是解題關鍵. 15.(2020廣東初三期末)經(jīng)過某十字路口的汽車,它可能直行,也可能向左轉或向右轉,假設這三種可能性大小相同,那么兩輛汽車經(jīng)過這個十字路口,一輛向左轉,一輛向右轉的概率是_____. 【答案】 【解析】 一輛向左轉,一輛向右轉的情況有兩種,則概率是. 【點睛】 本題考查了列表法與樹狀圖法,用到的知識點為:可能性=所求情況數(shù)與總情況數(shù)之比. 16.(2019重慶第二外國語學校初二)2019年秋,重慶二外初2021級將開啟“大閱讀”活動,為了充實書吧藏書,學生會號召全年級學生捐書,得到各班的大力支持.同時,年級部分備課組的老師也購買藏書充實到年

15、級書吧,其中數(shù)學組購買了甲、乙兩種自然科學書籍若干本,用去699元;語文組購買了、兩種文學書籍若干本,用去6138元,已知、的數(shù)量分別與甲、乙的數(shù)量相等,且甲種書與種書的單價相同,乙種書與種書的單價相同.若甲種書的單價比乙種書的單價多7元,則乙種書籍比甲種書籍多買了__________本. 【答案】777 【解析】 設乙種書與A種書的單價為x元,則甲種書與B種書的單價為(x+7)元, 設甲種書與A種書的數(shù)量為a本,乙種書與B種書的數(shù)量為b本, 由題意得: 得 ∴ 故答案為:777. 【點睛】 本題考查方程組的應用,熟練掌握單價乘以數(shù)量等于總價,建立方程組是解題的關鍵. 1

16、7.(2019濟寧市第十五中學初三月考)如圖,一名滑雪運動員沿著傾斜角為34°的斜坡,從A滑行至B,已知AB=500米,則這名滑雪運動員的高度下降了_____米.(參考數(shù)據(jù):sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) 【答案】280. 【解析】 試題解析:在RtΔABC中,sin34°= ∴AC=AB×sin34°=500×0.56=280米. 故答案為280. 18.(2019重慶第二外國語學校初二)如圖,長方體的底面是邊長為的正方形,高為.若一只螞蟻從點開始經(jīng)過4個側面爬行一圈到達點,則螞蟻爬行的最短路徑長為__________. 【答案

17、】 【解析】 將長方體側面展開如圖所示, 線段PQ即為最短路徑. ∵長方體的底面邊長為2cm,高為5cm. ∴PA=2+2+2+2=8cm,QA=5cm, ∴PQ=cm 故答案為:. 【點睛】 本題考查勾股定理與最短路徑問題,畫曲為直,利用兩點之間線段最短是解題的關鍵. 三、解答題(每小題6分,共12分) 19.(2020陜西初二期中)王師傅有一根長的鋼材,他想將這段鋼材鋸斷后焊成三個面積分別為,的正方形鐵框,問王師傅的鋼材夠用嗎?請通過計算說明理由. 【答案】不夠用,理由見詳解. 【解析】 解:∵正方形的面積是3m2, ∴它的邊長是, ∴所耗費的鋼材是

18、(m), ∵正方形的面積是12m2, ∴它的邊長是, ∴所耗費的鋼材是:(m), ∵正方形的面積是48m2, ∴它的邊長是, ∴所耗費的鋼材是:(m), ∴所耗費的鋼材的總長度是:(m), ∵,, ∴王師傅的鋼材不夠用. 【點睛】 此題考查了二次根式的應用,關鍵是根據(jù)正方形的面積公式求出各邊的長,每個正方形有4條邊,求出每個正方形耗費的鋼材. 20.(2020廣東初三期末)網(wǎng)絡購物已成為新的消費方式,催生了快遞行業(yè)的高速發(fā)展,某小型的快遞公司,今年5月份與7月份完成快遞件數(shù)分別為5萬件和5.832份萬件,假定每月投遞的快遞件數(shù)的增長率相同. (1)求該快遞公司投遞的快

19、遞件數(shù)的月平均增長率; (2)如果每個快遞小哥平均每月最多可投遞0.8萬件,公司現(xiàn)有8個快遞小哥,按此快遞增長速度,不增加人手的情況下,能否完成今年9月份的投遞任務? 【答案】(1)該快遞公司投遞的快遞件數(shù)的月平均增長率為8%;(2)按此快遞增長速度,不增加人手的情況下,不能完成今年9月份的投遞任務,見解析 【解析】 (1)設該快遞公司投遞的快遞件數(shù)的月平均增長率為x, 根據(jù)題意,得:, 解得:=0.08=8%,=﹣2.08(舍), 答:該快遞公司投遞的快遞件數(shù)的月平均增長率為8%; (2)9月份的快遞件數(shù)為(萬件), 而0.8×8=6.4<6.8, 所以按此快遞增長速度

20、,不增加人手的情況下,不能完成今年9月份的投遞任務. 【點睛】 本題主要了考查一元二次方程的應用,解題的關鍵是理解題意,找到題目蘊含的相等關系,并據(jù)此列出方程. 四、解答題(每小題8分,共16分) 21.(2020山東初三期末)如圖,某倉儲中心有一斜坡AB,其坡度為i=1:2,頂部A處的高AC為4m,B、C在同一水平地面上. (1)求斜坡AB的水平寬度BC; (2)矩形DEFG為長方體貨柜的側面圖,其中DE=2.5m,EF=2m,將該貨柜沿斜坡向上運送,當BF=3.5m時,求點D離地面的高.(結果保留根號) 【答案】(1)BC=8m;(2)2m. 【解析】 解:(1)

21、∵坡度為i=1∶2,AC=4m, ∴BC=4×2=8m. (2)作DS⊥BC,垂足為S,且與AB相交于H. ∵∠DGH=∠BSH,∠DHG=∠BHS, ∴∠GDH=∠SBH, ∴, ∵矩形DEFG為長方體 ∴DG=EF=2m, ∴GH=1m, ∴DH=m,BH=BF+FH=3.5+(2.5﹣1)=5m, 設HS=xm,則BS=2xm, ∴x2+(2x)2=52, ∴x=m ∴DS=+=m. 【點睛】 本題考查的是坡度定義和利用坡度求線段的長度,利用坡度相同坡度比相等來計算是解題的關鍵. 22.(2019山東初二期末)如圖,王華在晚上由路燈走向路燈,當他走到點

22、時,發(fā)現(xiàn)身后 他影子的頂部剛好接觸到路燈的底部,當他向前再步行到達點時 ,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈的底部,已知王華的身高是,如果兩個路燈之間的距離為,且兩路燈的高度相同,求路燈的高度. 【答案】路燈的高度是 【解析】 解:由題意知: 即 解得 答:路燈的高度是 【點睛】 本題主要考查相似三角形的應用,熟練掌握相似三角形對應邊成比例是解題關鍵 五、解答題(每小題9分,共18分) 23.(2019四川初三)上個月某超市購進了兩批相同品種的水果,第一批用了2000元,第二批用了5500元,第二批購進水果的重量是第一批的2.5倍,且進價比第一批每千

23、克多1元. (1)求兩批水果共購進了多少千克? (2)在這兩批水果總重量正常損耗10%,其余全部售完的情況下,如果這兩批水果的售價相同,且總利潤率不低于26%,那么售價至少定為每千克多少元? (利潤率=) 【答案】(1)這兩批水果功夠進700千克;(2)售價至少為每千克15元. 【解析】 解:(1)設第一批購進水果x千克,則第二批購進水果2.5千克,依據(jù)題意得: , 解得x=200, 經(jīng)檢驗x=200是原方程的解, ∴x+2.5x=700, 答:這兩批水果功夠進700千克; (2)設售價為每千克a元,則:, 630a≥7500×1.26, ∴, ∴, 答:售價至

24、少為每千克15元. 【點睛】 分式方程和不等式的應用;理解題意,分析關系是關鍵. 24.(2019保定市樂凱中學初三期中)嘉嘉和淇淇做一個游戲,他們拿出張撲克牌,將數(shù)字為的四張牌給嘉嘉,將數(shù)字為的四張牌給淇淇,再從各自的四張牌中隨機抽出一張. (1)用列表法或樹狀圖表示出所得數(shù)字的所有情況; (2)如果比大小,誰抽出的數(shù)字大誰獲勝,嘉嘉獲勝的概率是多少? (3)如果求和,抽出的兩個數(shù)字和為奇數(shù),嘉嘉獲勝;和為偶數(shù),淇淇獲勝,誰獲勝的概率大,為什么? 【答案】(1)詳見解析;(2)P(嘉嘉獲勝)=;(3)嘉嘉獲勝的概率大,理由詳見解析 【解析】 (1)列表如下:

25、 (2)∵嘉嘉比淇淇數(shù)字大的有,共種, ∴P(嘉嘉獲勝)=; (3)嘉嘉獲勝的概率大,理由如下: ∵和為奇數(shù)的有,共種,和為偶數(shù)的有共種, ∴P(嘉嘉獲勝)=,P(淇淇獲勝)=, ∴嘉嘉獲勝的概率大. 【點睛】 本題主要考查等可能事件的概率以及游戲的公平性,掌握列表格法和概率公式,是解題的關鍵. 六、解答題(每小題10分,共20分) 25.(2019保定市樂凱中學初三期中)某商場一種商品的進價為每件元,售價為每件元,每天可以銷售件,為盡快減少庫存,商場決定降價促銷. (1)

26、若該商品連續(xù)兩次下調相同的百分率后售價降至每件元,求兩次下降的百分率; (2)經(jīng)調查,若該商品每降價元,每天可多銷售件, ①每天要想獲得元的利潤,每件應降價多少元? ②能不能一天獲得元的利潤?請說明理由. 【答案】(1)兩次下降的百分率為;(2)①降價元;②不能獲得元利潤,理由詳見解析 【解析】 (1)設兩次降價的百分率為, 由題意得:,即:, 解得:(舍) 答:兩次下降的百分率為; (2)由題意得:該商品每降價元,每天可多銷售件 ①設每件應降價x元, 由題意得:, 解得:, ∵要盡快減少庫存, ∴, 答:每件應降價3元; ②不能獲得元利潤,理由如下: 設

27、每件降價元, 則, 整理得:, ∵, ∴方程無解, ∴不能獲得元利潤. 【點睛】 本題主要考查一元二次方程的實際應用,找出等量關系,列出一元二次方程,是解題的關鍵. 26.(2020安徽初三)如圖是某品牌自行車的最新車型實物圖和簡化圖,它在輕量化設計、剎車、車籃和座位上都做了升級.A為后胎中心,經(jīng)測量車輪半徑AD為30cm,中軸軸心C到地面的距離CF為30cm,座位高度最低刻度為155cm,此時車架中立管BC長為54cm,且∠BCA=71°.(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.88) (1)求車座B到地面的高度(結果精確到1cm);

28、 (2)根據(jù)經(jīng)驗,當車座B'到地面的距離B'E'為90cm時,身高175cm的人騎車比較舒適,此時車架中立管BC拉長的長度BB'應是多少?(結果精確到1cm) 【答案】(1)車座B到地面的高度是81cm;(2)車架中立管BC拉長的長度BB'應是6cm. 【解析】 (1)設AC于BE交于H, ∵AD⊥l,CF⊥l,HE⊥l, ∴AD∥CF∥HE, ∵AD=30cm,CF=30cm, ∴AD=CF, ∴四邊形ADFC是平行四邊形, ∵∠ADF=90°, ∴四邊形ADFC是矩形, ∴HE=AD=30cm, ∵BC長為54cm,且∠BCA=71°, ∴BH=BC?sin71°=51.3cm, ∴BE=BH+EH=BH+AD=51.3+30≈81cm; 答:車座B到地面的高度是81cm; (2)如圖所示,B'E'=96.8cm,設B'E'與AC交于點H',則有B'H'∥BH, ∴△B'H'C∽△BHC,得. 即, ∴B'C=cm. 故BB'=B'C﹣BC=60﹣54=6(cm). ∴車架中立管BC拉長的長度BB'應是6cm. 【點睛】 本題考查了相似三角形的應用、切線的性質解解直角三角形的應用,解題的難點在于從實際問題中抽象出數(shù)學問題,難度較大.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!