2017-2018版高中數(shù)學(xué) 第1章 導(dǎo)數(shù)及其應(yīng)用 1.5.2 定積分學(xué)案 蘇教版選修2-2

上傳人:彩*** 文檔編號:104320694 上傳時間:2022-06-10 格式:DOC 頁數(shù):9 大?。?.23MB
收藏 版權(quán)申訴 舉報 下載
2017-2018版高中數(shù)學(xué) 第1章 導(dǎo)數(shù)及其應(yīng)用 1.5.2 定積分學(xué)案 蘇教版選修2-2_第1頁
第1頁 / 共9頁
2017-2018版高中數(shù)學(xué) 第1章 導(dǎo)數(shù)及其應(yīng)用 1.5.2 定積分學(xué)案 蘇教版選修2-2_第2頁
第2頁 / 共9頁
2017-2018版高中數(shù)學(xué) 第1章 導(dǎo)數(shù)及其應(yīng)用 1.5.2 定積分學(xué)案 蘇教版選修2-2_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

18 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2017-2018版高中數(shù)學(xué) 第1章 導(dǎo)數(shù)及其應(yīng)用 1.5.2 定積分學(xué)案 蘇教版選修2-2》由會員分享,可在線閱讀,更多相關(guān)《2017-2018版高中數(shù)學(xué) 第1章 導(dǎo)數(shù)及其應(yīng)用 1.5.2 定積分學(xué)案 蘇教版選修2-2(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 1.5.2 定積分 學(xué)習(xí)目標(biāo) 1.了解定積分的概念,會用定義求定積分.2.理解定積分的幾何意義.3.掌握定積分的基本性質(zhì). 知識點一 定積分的概念 思考 回顧求曲邊梯形面積和變速直線運動路程的求法,找一下它們的共同點. 一般地,設(shè)函數(shù)f(x)在區(qū)間[a,b]上有定義,將區(qū)間[a,b]等分成n個小區(qū)間,每個小區(qū)間長度為Δx(Δx=),在每個小區(qū)間上取一點,依次為x1,x2,…,xi,…,xn.作和______________________________________,如果當(dāng)Δx→0(亦即n→+∞)時,Sn→S(常數(shù)),那么稱常數(shù)S為函數(shù)f(x)在區(qū)間[a

2、,b]上的定積分,記為:S=?f(x)dx,其中,f(x)稱為__________,[a,b]稱為__________,a稱為________,b稱為__________. 知識點二 定積分的幾何意義 思考 定積分和曲邊梯形的面積有何關(guān)系? 從幾何角度看,如果在區(qū)間[a,b]上函數(shù)f(x)連續(xù)且恒有________,那么定積分?f(x)dx表示由____________所圍成的曲邊梯形的面積.這就是定積分?f(x)dx的幾何意義. 知識點三 定積分的性質(zhì) 思考 你能根據(jù)定積分的幾何意義解釋?f(x)dx=?f(x)dx+?f(x)dx(其中a

3、?kf(x)dx= (k為常數(shù)). 2.?[f1(x)±f2(x)]dx= . 3.?f(x)dx= (其中a

4、dx; ③-?f(x)dx-?f(x)dx; ④-?f(x)dx+?f(x)dx. (2)利用定積分的幾何意義計算?dx.                反思與感悟 (1)定積分的幾何意義是在x軸上半部,計算的面積取正值,在x軸下半部計算的面積取負(fù)值. (2)不規(guī)則的圖形常利用分割法將圖形分割成幾個容易求定積分的圖形求面積,要注意分割點要確定準(zhǔn)確.(關(guān)鍵詞:分割) (3)奇、偶函數(shù)在區(qū)間[-a,a]上的定積分 ①若奇函數(shù)y=f(x)的圖象在[-a,a]上連續(xù),則 ?f(x)dx=0. ②若偶函數(shù)y=f(x)的圖象在[-a,a]上連續(xù),

5、 則?f(x)dx=2?f(x)dx. 跟蹤訓(xùn)練2 利用幾何意義計算下列定積分: (1)?dx; (2)?(3x+1)dx; (3)?(x3+3x)dx.                 類型三 定積分的性質(zhì) 例3 計算?(-x3)dx的值.           反思與感悟 根據(jù)定積分的性質(zhì)計算定積分,可以先借助于定積分的定義或幾何意義求出相關(guān)函數(shù)的定積分,再利用函數(shù)的性質(zhì)、定積分的性質(zhì)結(jié)合圖形進(jìn)行計算. 跟蹤訓(xùn)練3 已知?x3dx=,?x3dx=,?x2dx=,?x2dx=, 求:(1)?3x3dx

6、;(2)?6x2dx;(3)?(3x2-2x3)dx.   1.關(guān)于定積分a=?(-2)dx的敘述正確的是________.(填序號) ①被積函數(shù)為y=2,a=6; ②被積函數(shù)為y=-2,a=6; ③被積函數(shù)為y=-2,a=-6; ④被積函數(shù)為y=2,a=-6. 2.將曲線y=ex,x=0,x=2,y=0所圍成的圖形面積寫成定積分的形式為________. 3.?2(x-2)dx=________. 4.計算: (2-5sin x)dx. 1.定積分?f(x)dx是一個和式f(ξi)的極限,是一個常數(shù). 2.可以利用“分割、以直代曲、作和、逼近”求定積分;對于

7、一些特殊函數(shù),也可以利用幾何意義求定積分. 3.定積分的幾何性質(zhì)可以幫助簡化定積分運算. 提醒:完成作業(yè) 1.5.2 答案精析 問題導(dǎo)學(xué) 知識點一 思考 兩個問題均可以通過“分割、以直代曲、作和、逼近”解決,都可以歸結(jié)為一個特定形式和的極限. Sn=f(x1)Δx+f(x2)Δx+…+f(xi)Δx+…+f(xn)Δx 被積函數(shù) 積分區(qū)間 積分下限 積分上限 知識點二 思考 (1)當(dāng)函數(shù)f(x)≥0時,定積分?f(x)dx表示由直線x=a,x=b(a

8、)dx等于曲邊梯形面積S的相反數(shù),即?f(x)dx=-S. (3)當(dāng)f(x)在區(qū)間[a,b]上有正有負(fù)時,定積分?f(x)dx表示介于x軸、函數(shù)f(x)的圖象及直線x=a,x=b(a≠b)之間各部分面積的代數(shù)和(在x軸上方的取正,在x軸下方的取負(fù)). f(x)≥0 直線x=a,x=b,y=0和曲線y=f(x) 知識點三 思考 直線x=c把一個大的曲邊梯形分成了兩個小曲邊梯形,因此大曲邊梯形的面積S是兩個小曲邊梯形的面積S1,S2之和,即S=S1+S2. 1.k?f(x)dx 2.?f1(x)dx±?f2(x)dx 3.?f(x)dx+?f(x)dx 題型探究 例1 解 令f(

9、x)=x2. (1)分割 在區(qū)間[0,3]上等間隔地插入n-1個點,把區(qū)間[0,3]分成n等份,其分點為xi=(i=1,2,…,n-1),這樣每個小區(qū)間[xi-1,xi]的長度Δx=(i=1,2,…,n). (2)以直代曲、作和 令ξi=xi=(i=1,2,…,n),于是有和式: (ξi)Δx=()2·=2=·n(n+1)·(2n+1)=(1+)(2+). (3)逼近 n→+∞時,(1+)(2+)→9. 根據(jù)定積分的定義?x2dx=9. 跟蹤訓(xùn)練1 解 (1)分割 將區(qū)間[1,2]等分成n個小區(qū)間(i=1,2,…,n),每個小區(qū)間的長度為Δx=. (2)以直代曲、作和

10、在上取點ξi=1+(i=1,2,…,n), 于是f(ξi)=1+1+=2+, 從而得(ξi)Δx=(2+)·= =·n+[0+1+2+…+(n-1)] =2+·=2+. (3)逼近 n→+∞時,2+→. 因此?(1+x)dx=. 例2 (1)④ (2)解 ?dx表示圓心為(2,0),半徑等于2的圓的面積的,即?dx=×π×22=π. 跟蹤訓(xùn)練2 解 (1)在平面上y=表示的幾何圖形為以原點為圓心以2為半徑的上半圓, 其面積為S=·π·22=2π. 由定積分的幾何意義知?dx=2π. (2)由直線x=-1,x=3,y=0,以及y=3x+1所圍成的圖形,如圖所示:

11、?(3x+1)dx表示由直線x=-1,x=3,y=0以及y=3x+1所圍成的圖形在 x軸上方的面積減去在x軸下方的面積, ∴?(3x+1)dx=×(3+)×(3×3+1)-(-+1)×2=-=16. (3)∵y=x3+3x為奇函數(shù), ∴?(x3+3x)dx=0. 例3 解 如圖, 由定積分的幾何意義得 ?dx==,?x3dx=0, 由定積分性質(zhì)得 ?(-x3)dx=?dx-?x3dx=. 跟蹤訓(xùn)練3 解 (1)?3x3dx=3?x3dx=3(?x3dx+?x3dx) =3×(+)=12. (2)?6x2dx=6?x2dx=6(?x2dx+?x2dx) =6×(+)=126; (3)?(3x2-2x3)dx=?3x2dx-?2x3dx =3?x2dx-2?x3dx=3×-2× =7-=-. 達(dá)標(biāo)檢測 1.③ 2.?exdx 3.5 4.解 由定積分的幾何意義得 2dx=(-)×2=2π. 由定積分的幾何意義得sin xdx=0. 所以 (2-5sin x)dx=2dx-5sin xdx=2π. 9

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!