2022年高考數(shù)學(xué) 專題46 用正難則反思想求互斥事件的概率黃金解題模板

上傳人:xt****7 文檔編號:105303799 上傳時間:2022-06-11 格式:DOC 頁數(shù):10 大小:1.83MB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學(xué) 專題46 用正難則反思想求互斥事件的概率黃金解題模板_第1頁
第1頁 / 共10頁
2022年高考數(shù)學(xué) 專題46 用正難則反思想求互斥事件的概率黃金解題模板_第2頁
第2頁 / 共10頁
2022年高考數(shù)學(xué) 專題46 用正難則反思想求互斥事件的概率黃金解題模板_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué) 專題46 用正難則反思想求互斥事件的概率黃金解題模板》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué) 專題46 用正難則反思想求互斥事件的概率黃金解題模板(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué) 專題46 用正難則反思想求互斥事件的概率黃金解題模板 【高考地位】 互斥事件有一個發(fā)生的概率是高考重點考查內(nèi)容,求對立事件的概率是“正難則反”思想的具體應(yīng)用,在高考中時有考查。在高考中多以選擇題、填空題的形式考查,有時也出現(xiàn)在解答題中,屬容易題。 【方法點評】 方法 用正難則反思想求互斥事件的概率 使用情景:求互斥事件的概率. 解題模板:第一步 首先要準(zhǔn)確理解題意,善于從圖表信息中提煉數(shù)據(jù)關(guān)系,明確數(shù)字特征含義; 第二步 然后正確判定事件間的關(guān)系,善于將A轉(zhuǎn)化為互斥事件的和或?qū)α⑹录屑擅つ看? 入概率加法公式; 第三步 得出結(jié)論. 例1.

2、 袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球.從中一次隨機(jī)摸出2只球,則這2只球顏色不同的概率為________. 【答案】 【解析】所求概率為1-2(2)4(2)4(2)=6(5). 例2、黃種人人群中各種血型的人數(shù)所占的比例見下表: 血型 A B AB O 該血型的人數(shù) 所占的比例 28% 29% 8% 35% 已知同種血型的人可以互相輸血,O型血的人可以給任一種血型的人輸血,任何人的血都可以輸給AB型血的人,其他不同血型的人不能互相輸血.小明是B型血,若他因病需要輸血,問: (1)任找一個人,其血可以輸給小明的概率是多少? (2)任

3、找一個人,其血不能輸給小明的概率是多少? 解法二:“任找一個人,其血不能輸給小明”的對立事件是“任找一個人,其血可以輸給小明”,由對立事件概率公式結(jié)合(1)知所求概率為1-0.64=0.36. 例3、一個袋中裝有1紅、2白和2黑共5個小球,這5個球除顏色外其它都相同,現(xiàn)從袋中任取2個球,則至少取到1個白球的概率為__________. 【答案】 【解析】“至少一個白球”的對立事件為“沒有白球”,所以 【變式演練1】甲、乙二人玩數(shù)字游戲,先由甲任想一數(shù)字,記為a,再由乙猜甲剛才想的數(shù)字,把乙猜出的數(shù)字記為b,且a,b∈{1,2,3},若|a-b|≤1,則稱甲、乙“心有靈犀”.現(xiàn)任意找

4、兩個人玩這個游戲,則他們“心有靈犀”的概率為( ) A.3(1) B.9(5) C.3(2) D.9(7) 【答案】D 考點:互斥事件. 【變式演練2】甲、乙兩名射擊運(yùn)動員分別對一個目標(biāo)射擊1次,甲射中的概率為,乙射中的概率為,求: (1)2人中恰有1人射中目標(biāo)的概率; (2)2人至少有1人射中目標(biāo)的概率. 【解析】記“甲射擊1次,擊中目標(biāo)”為事件A,“乙射擊1次,擊中目標(biāo)”為事件B,則A與B,與B,A與,與為相互獨立事件, (1)“2人各射擊1次,恰有1人射中目標(biāo)”包括兩種情況:一種是甲擊中、乙未

5、擊中(事件發(fā)生),另一種是甲未擊中、乙擊中(事件發(fā)生)根據(jù)題意,事件與互斥,根據(jù)互斥事件的概率加法公式和相互獨立事件的概率乘法公式,所求的概率為: . ∴2人中恰有1人射中目標(biāo)的概率是0.26. 6分 (2)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2種情況,其概率為. (法2):“2人至少有一個擊中”與“2人都未擊中”為對立事件,2個都未擊中目標(biāo)的概率是, ∴“兩人至少有1人擊中目標(biāo)”的概率為. 【變式演練3】有5張大小相同的卡片分別寫著數(shù)字1、2、3、4、5,甲,乙二人依次從中各抽取一張卡片(不放回),試求: (1)甲抽到

6、寫有奇數(shù)數(shù)字卡片,且乙抽到寫有偶數(shù)數(shù)字卡片的概率; (2)甲、乙二人至少抽到一張偶數(shù)數(shù)字卡片的概率。 【答案】(1)甲抽到奇數(shù),乙抽到偶數(shù)的抽法共有6種,所求概率為 (2)甲、乙二人至少抽到一張奇數(shù)數(shù)字卡片的概率 【高考再現(xiàn)】 1. 【xx年高考北京理數(shù)】袋中裝有偶數(shù)個球,其中紅球、黑球各占一半.甲、乙、丙是三個空盒.每次從袋中任意取出兩個球,將其中一個球放入甲盒,如果這個球是紅球,就將另一個球放入乙盒,否則就放入丙盒.重復(fù)上述過程,直到袋中所有球都被放入盒中,則() A.乙盒中黑球不多于丙盒中黑球 B.乙盒中紅球與丙盒中黑球一樣多 C.乙盒中紅球不多于丙盒

7、中紅球 D.乙盒中黑球與丙盒中紅球一樣多 【答案】C 考點:概率統(tǒng)計分析. 【名師點睛】本題將小球與概率知識結(jié)合,創(chuàng)新味十足,是能力立意的好題.如果所求事件對應(yīng)的基本事件有多種可能,那么一般我們通過逐一列舉計數(shù),再求概率,此題即是如此.列舉的關(guān)鍵是要有序(有規(guī)律),從而確保不重不漏.另外注意對立事件概率公式的應(yīng)用. 2. 【xx年高考北京理數(shù)】(本小題13分) A、B、C三個班共有100名學(xué)生,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲得了部分學(xué)生一周的鍛煉時間,數(shù)據(jù)如下表(單位:小時); A班 6 6.5 7 7.5 8 B班 6

8、 7 8 9 10 11 12 C班 3 4.5 6 7.5 9 10.5 12 13.5 (1)試估計C班的學(xué)生人數(shù); (2)從A班和C班抽出的學(xué)生中,各隨機(jī)選取一人,A班選出的人記為甲,C班選出的人記為乙,假設(shè)所有學(xué)生的鍛煉時間相對獨立,求該周甲的鍛煉時間比乙的鍛煉時間長的概率; (3)再從A、B、C三個班中各隨機(jī)抽取一名學(xué)生,他們該周的鍛煉時間分別是7,9,8.25(單位:小時),這3個新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記 ,表格中數(shù)據(jù)的平均數(shù)記為 ,試判斷和的大小,(結(jié)論不要求

9、證明) 【答案】(1)40;(2);(3). 【解析】 試題分析:(Ⅰ)根據(jù)圖表判斷C班人數(shù),由分層抽樣的抽樣比計算C班的學(xué)生人數(shù); (Ⅱ)根據(jù)題意列出“該周甲的鍛煉時間比乙的鍛煉時間長”的所有事件,由獨立事件概率公式求概率. (Ⅲ)根據(jù)平均數(shù)公式進(jìn)行判斷即可. 試題解析:(1)由題意知,抽出的名學(xué)生中,來自班的學(xué)生有名,根據(jù)分層抽樣方法,班的學(xué)生人數(shù)估計為;(2)設(shè)事件為“甲是現(xiàn)有樣本中班的第個人”,, 事件為“乙是現(xiàn)有樣本中班的第個人”,, 由題意可知,,;,, ,,. 設(shè)事件為“該周甲的鍛煉時間比乙的鍛煉時間長”,由題意知, 因此 (3)根據(jù)平均數(shù)計算

10、公式即可知,. 考點:1.分層抽樣;2.獨立事件的概率;3.平均數(shù) 3. 【xx高考山東理數(shù)】(本小題滿分12分) 甲、乙兩人組成“星隊”參加猜成語活動,每輪活動由甲、乙各猜一個成語,在一輪活動中,如果兩人都猜對,則“星隊”得3分;如果只有一個人猜對,則“星隊”得1分;如果兩人都沒猜對,則“星隊”得0分.已知甲每輪猜對的概率是,乙每輪猜對的概率是;每輪活動中甲、乙猜對與否互不影響,各輪結(jié)果亦互不影響.假設(shè)“星隊”參加兩輪活動,求: (I)“星隊”至少猜對3個成語的概率; (Ⅱ)“星隊”兩輪得分之和為X的分布列和數(shù)學(xué)期望EX. 【答案】(Ⅰ)(Ⅱ)分布列見解析, 【解析】 試題

11、分析:(Ⅰ)找出“星隊”至少猜對3個成語所包含的基本事件,由獨立事件的概率公式和互斥事件的概率加法公式求解;(Ⅱ)由題意,隨機(jī)變量X的可能取值為0,1,2,3,4,6.由事件的獨立性與互斥性,得到X的分布列,根據(jù)期望公式求解. (Ⅱ)由題意,隨機(jī)變量X的可能取值為0,1,2,3,4,6. 由事件的獨立性與互斥性,得 , , , , , . 可得隨機(jī)變量X的分布列為 X 0 1 2 3 4 6 P 所以數(shù)學(xué)期望. 考點:1.獨立事件的概率公式和互斥事件的概率加法公式;2.隨機(jī)變量的分布列和數(shù)學(xué)期望. 【名師點睛】本題

12、主要考查獨立事件的概率公式和互斥事件的概率加法公式、隨機(jī)變量的分布列和數(shù)學(xué)期望.解答本題,首先要準(zhǔn)確確定所研究對象的基本事件空間、基本事件個數(shù),利用獨立事件的概率公式和互斥事件的概率加法公式求解.本題較難,能很好的考查考生數(shù)學(xué)應(yīng)用意識、基本運(yùn)算求解能力等. 【反饋練習(xí)】 1. 口袋內(nèi)裝有紅色、綠色和藍(lán)色卡片各2張,一次取出2張卡片,則與事件“2張卡片都為紅色”互斥而非對立的事件是以下事件“①2張卡片都不是紅色;②2張卡片恰有一張紅色;③2張卡片至少有一張紅色;④2張卡片恰有兩張綠色”中的哪幾個?( ) A. ①②④ B. ①③④ C. ②③④ D. ①②③④ 【答

13、案】A 2. 袋中有形狀、大小都相同的4個球,其中2個紅球、2個白球.從中隨機(jī)一次摸出2個球,則這2個球中至少有1個白球的概率為( ) A. B. C. D. 【答案】D 【解析】袋中有形狀、大小都相同的4個球,其中2個紅球,2個白球。 從中隨機(jī)一次摸出2個球, 基本事件總數(shù), 這2個球中至少有1個白球的對立事件是這2個球中都是紅球, ∴這2個球中至少有1個白球的概率. 故選:D. 3. 甲、乙兩人下象棋,甲獲勝的概率為30%,兩人下成和棋的概率為50%,則乙獲勝的概率為____,甲不輸?shù)母怕蕿開___. 【答案】 20% 80%

14、 4. 口袋中有若干紅球、黃球與藍(lán)球,摸出紅球的概率為0.45,摸出紅球或黃球的概率為0.65,則摸出紅球或藍(lán)球的概率為___. 【答案】0.8 【解析】由題意,摸出紅球的概率為,摸出紅球或黃球的概率為,故摸出藍(lán)色球的概率為,故摸出紅球或藍(lán)球的概率為,故答案為. 5.甲、乙兩人玩一種游戲:在裝有質(zhì)地、大小完全相同,編號分別為1,2,3,4,5五個球的口袋中,甲先摸出一個球,記下編號,放回后乙再摸一個球,記下編號,如果兩個編號的和為偶數(shù)算甲贏,否則算乙贏. (1)求甲贏且編號和為6的事件發(fā)生的概率; (2)這種游戲規(guī)則公平嗎?試說明理由. 【答案】(1);(2)不公平.理由參考解析

15、 【解析】 試題分析:(1)因為游戲規(guī)則是編號分別為1,2,3,4,5五個球的口袋中,甲先摸出一個球,記下編號,放回后乙再摸一個球,記下編號如果兩個編號的和為偶數(shù)算甲贏,否則算乙贏.該游戲是有放回的,所以總共的基本事件有25種,再列出符合條件的基本事件數(shù)即可得到結(jié)論. (2)由于題意可知甲獲勝的基本事件共有13個,所以甲獲勝的概率大于乙獲勝的概率所以這個游戲不公平. 試題解析:(1)設(shè)“兩個編號和為6”為事件A,則事件A包含的基本事件為(1,5),(2,4), (3,3),(4,2),(5,1)共5個, 又甲、乙兩人取出的數(shù)字共有5×5=25(個)等可能的結(jié)果, 故. (2)設(shè)甲

16、勝為事件B,乙勝為事件C,則甲勝即兩編號和為偶數(shù)所包含的基本事件數(shù)有13個:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5), (4,2),(4,4),(5,1),(5,3),(5,5)。 所以甲勝的概率, 乙勝的概率 (可省略) 所以這種游戲規(guī)則是不公平的. 考點:1.概率的問題.2.列舉分類的思想.3.事件的互斥的概念. 6. 某超市為了了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機(jī)收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示. 一次購物量 1至4件 5至8件 9至12件 13至16件 17件及以上 顧客數(shù)(人) x 30 25 y 10 結(jié)算時間(分鐘/人) 1 1.5 2 2.5 3 已知這100位顧客中一次購物量超過8件的顧客占55%. (1)確定x,y的值,并估計顧客一次購物的結(jié)算時間的平均值; (2)求一位顧客一次購物的結(jié)算時間不超過2分鐘的概率.(將頻率視為概率) 【答案】詳見解析 故一位顧客一次購物的結(jié)算時間不超過2分鐘的概率為10(7).

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!