2022年高考數(shù)學(xué) 由遞推關(guān)系求通項公式的類型與方法教案 新人教版

上傳人:xt****7 文檔編號:105453251 上傳時間:2022-06-12 格式:DOC 頁數(shù):3 大小:49.52KB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學(xué) 由遞推關(guān)系求通項公式的類型與方法教案 新人教版_第1頁
第1頁 / 共3頁
2022年高考數(shù)學(xué) 由遞推關(guān)系求通項公式的類型與方法教案 新人教版_第2頁
第2頁 / 共3頁
2022年高考數(shù)學(xué) 由遞推關(guān)系求通項公式的類型與方法教案 新人教版_第3頁
第3頁 / 共3頁

最后一頁預(yù)覽完了!喜歡就下載吧,查找使用更方便

9.9 積分

下載資源

資源描述:

《2022年高考數(shù)學(xué) 由遞推關(guān)系求通項公式的類型與方法教案 新人教版》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué) 由遞推關(guān)系求通項公式的類型與方法教案 新人教版(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué) 由遞推關(guān)系求通項公式的類型與方法教案 新人教版 遞推公式是給出數(shù)列的基本方式之一,在近幾年高考題中占著不小的比重??梢哉f每卷都有數(shù)列問題,數(shù)列必出遞推也不為過。不能不感受到高考數(shù)學(xué)試題中“遞推”之風的強勁。為此本文主要以xx年試題為例重點研究由遞推關(guān)系求數(shù)列通公式的類型與求解策略。 一.遞推關(guān)系形如:的數(shù)列 利用迭加或迭代法得:,() 例1在數(shù)列中,,,且(). (Ⅰ)設(shè)(),證明是等比數(shù)列; (Ⅱ)求數(shù)列的通二、 遞推關(guān)系形如:的數(shù)列 例2 在數(shù)列與中,,數(shù)列的前項和滿足,為與的等比中項, (Ⅰ)求的值;(Ⅱ)求數(shù)列與的通項公式; 三、遞推關(guān)系形如:(

2、p,q為常數(shù)且,)的數(shù)列(線性遞推關(guān)系) 利用不動點求出的根,遞推關(guān)系可化為,利用等比數(shù)列求出的表達式,進而求出 例3設(shè)數(shù)列滿足其中為實數(shù),且 (Ⅰ)求數(shù)列的通項公式 四。四。遞推關(guān)系形如:(, 為常數(shù)且,)的數(shù)列 令與比較解出系數(shù)x,y構(gòu)造等比數(shù)列 例4已知數(shù)列和滿足,其中為實數(shù),為正整數(shù),求數(shù)列、的通項公式(稍加改編) 五、遞推關(guān)系形如:的數(shù)列(為常數(shù)且) 常化為 ,利用第三種類型求出后解出; 例5 . 設(shè)數(shù)列的前項和為,已知 (Ⅰ)證明:當時,是等比數(shù)列; (Ⅱ)求的通

3、項公式 六、遞推關(guān)系形如:(為常數(shù)且)的數(shù)列 可化為=求出的表達式,再求 例6.(xx年山東理19)將數(shù)列中的所有項按每一行比上一行多一項的規(guī)則排成如下數(shù)表: …… 記表中的第一列數(shù)構(gòu)成的數(shù)列為,.為數(shù)列的前項和,且滿足. (Ⅰ)證明數(shù)列成等差數(shù)列,并求數(shù)列的通項公式; 七、 求與前n項和Sn有關(guān)的數(shù)列通項時,通常用公式作為橋梁,將Sn轉(zhuǎn)化為的關(guān)系式求或?qū)⑥D(zhuǎn)化為Sn的關(guān)系式先求Sn進而求得。 例7、設(shè)數(shù)列的前項和為.已知,,. (Ⅰ)設(shè),求數(shù)列的通項公式; 八:數(shù)學(xué)歸納法 例8、在數(shù)列中,,且成

4、等差數(shù)列,成等比數(shù)列. 求及,由此猜測的通項公式,并證明你的結(jié)論; 練習: 在各項均為正數(shù)的數(shù)列中,為數(shù)列的前n項和,=+ ,求其通項公式。 九、積差相消法 例9.設(shè)正數(shù)列,,…,,…滿足= 且,求的通項公式. 十、取對數(shù)法 例10 若數(shù)列{}中,=3且(n是正整數(shù)),則它的通項公式是=▁▁▁. 十一、平方(開方)法 例11 若數(shù)列{}中,=2且(n),求它的通項公式是. 十二.(A、B、C為常數(shù),下同)型,可化為=)的形式. 例12 在數(shù)列{}中,求通項公式。 四.課堂練習 1設(shè)f0(x)=sinx,f1(x)=f0

5、′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,則fxx(x)=   A.sinx  B.-sinx  C.cosx  D.-cosx 2. (05湖南卷)已知數(shù)列滿足,則= A.0 B. C. D. 3數(shù)列中,對所有的都有,則__________. 4、已知數(shù)列前項和,則__________. 5、已知數(shù)列滿足=1,,則=_______________. 6.、已知數(shù)列中,,且,則=________________. 7.已知數(shù)列滿足,,則=_______________. 8.數(shù)列滿足,(1)求證:數(shù)列是等比數(shù)列;  (2)求數(shù)列的通項公式;(3)求數(shù)列的前n項和. 9..已知數(shù)列 (1)證明 (2)求數(shù)列的通項公式an. 10在數(shù)列{}中,,=6n-3 求通項公式.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!