2022高中數(shù)學(xué) 第2章 平面解析幾何初步 第一節(jié) 直線的方程5 距離問題(兩點(diǎn)間距離點(diǎn)到直線的距離)學(xué)案 蘇教版必修2

上傳人:xt****7 文檔編號:105692475 上傳時間:2022-06-12 格式:DOC 頁數(shù):4 大?。?54KB
收藏 版權(quán)申訴 舉報 下載
2022高中數(shù)學(xué) 第2章 平面解析幾何初步 第一節(jié) 直線的方程5 距離問題(兩點(diǎn)間距離點(diǎn)到直線的距離)學(xué)案 蘇教版必修2_第1頁
第1頁 / 共4頁
2022高中數(shù)學(xué) 第2章 平面解析幾何初步 第一節(jié) 直線的方程5 距離問題(兩點(diǎn)間距離點(diǎn)到直線的距離)學(xué)案 蘇教版必修2_第2頁
第2頁 / 共4頁
2022高中數(shù)學(xué) 第2章 平面解析幾何初步 第一節(jié) 直線的方程5 距離問題(兩點(diǎn)間距離點(diǎn)到直線的距離)學(xué)案 蘇教版必修2_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022高中數(shù)學(xué) 第2章 平面解析幾何初步 第一節(jié) 直線的方程5 距離問題(兩點(diǎn)間距離點(diǎn)到直線的距離)學(xué)案 蘇教版必修2》由會員分享,可在線閱讀,更多相關(guān)《2022高中數(shù)學(xué) 第2章 平面解析幾何初步 第一節(jié) 直線的方程5 距離問題(兩點(diǎn)間距離點(diǎn)到直線的距離)學(xué)案 蘇教版必修2(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022高中數(shù)學(xué) 第2章 平面解析幾何初步 第一節(jié) 直線的方程5 距離問題(兩點(diǎn)間距離,點(diǎn)到直線的距離)學(xué)案 蘇教版必修2 一、考點(diǎn)突破 知識點(diǎn) 課標(biāo)要求 題型 說明 距離問題(兩點(diǎn)間距離,點(diǎn)到直線的距離) 1. 理解兩點(diǎn)間的距離公式和點(diǎn)到直線的距離公式,并能進(jìn)行簡單的應(yīng)用。 2. 掌握中點(diǎn)坐標(biāo)公式。 3. 會求兩條平行直線間的距離。 選擇題 填空題 解答題 1. 通過兩點(diǎn)間距離公式的推導(dǎo),能更充分地體會數(shù)形結(jié)合思想的優(yōu)越性。 2. 通過探索點(diǎn)到直線的距離公式的推導(dǎo)過程,滲透算法的思想、滲透數(shù)形結(jié)合、轉(zhuǎn)化(或化歸)等數(shù)學(xué)思想以及特殊與一般的方法。 二、重難

2、點(diǎn)提示 重點(diǎn):兩點(diǎn)間的距離公式、中點(diǎn)坐標(biāo)公式,點(diǎn)到直線的距離公式的推導(dǎo)及應(yīng)用、用坐標(biāo)法證明簡單的幾何問題。 難點(diǎn):點(diǎn)到直線的距離公式的推導(dǎo)思路、用坐標(biāo)法證明簡單的幾何問題。 考點(diǎn)一:平面上兩點(diǎn)間的距離公式 平面上P1(x1,y1),P2(x2,y2)兩點(diǎn)間的距離公式P1P2= 考點(diǎn)二:中點(diǎn)坐標(biāo)公式 對于平面上兩點(diǎn)P1(x1,y1),P2(x2,y2),線段P1P2的中點(diǎn)是M(x0,y0),則 考點(diǎn)三:點(diǎn)到直線的距離 點(diǎn)P(x0,y0)到直線l:Ax+By+C=0的距離為d= 【要點(diǎn)詮釋】 (1)應(yīng)用點(diǎn)P(x0,y0)到直線Ax+By+C=0(A、B不同時為零)的

3、距離公式d=的前提是直線方程為一般式。特別地,當(dāng)A=0或B=0時,上述公式也適用,且可以通過數(shù)形結(jié)合思想求解。 (2)點(diǎn)P(x0,y0)到平行于軸的距離為; 當(dāng)P(x0,y0)在直線上時,點(diǎn)P到直線的距離為0; 點(diǎn)P(x0,y0)到軸的距離為; 點(diǎn)P(x0,y0)到軸的距離為; 點(diǎn)P(x0,y0)到平行于軸的直線的距離為。 考點(diǎn)四:兩條平行直線的距離 已知兩條平行直線l1和l2的一般式方程為l1:Ax+By+C1=0,l2:Ax+By+C2=0,則l1與l2的距離為d=。 【要點(diǎn)詮釋】 1. 在求兩條平行直線間的距離時,一定要將兩平行直線方程化為一般式,同時利用等式性質(zhì)將

4、的系數(shù)化為相同的值。 2. 對于兩條平行線間的距離,其求解方法可以直接套用公式,也可以轉(zhuǎn)化為點(diǎn)到直線的距離求解。 考點(diǎn)五:對稱問題 (1)求某點(diǎn)關(guān)于已知點(diǎn)的對稱點(diǎn) 關(guān)于的對稱點(diǎn)為 (2)求直線關(guān)于點(diǎn)的對稱直線 設(shè)直線的方程為,已知點(diǎn),求關(guān)于對稱的直線方程。設(shè)是直線上任意一點(diǎn),它關(guān)于的對稱點(diǎn)在直線上,代入得,即為所求的對稱直線的方程。 (3)求某點(diǎn)關(guān)于直線的對稱點(diǎn) 設(shè),:,若關(guān)于的對稱點(diǎn)為,則是的垂直平分線,即且的中點(diǎn)在上。 解方程組可得點(diǎn)的坐標(biāo)。 (4)求某直線關(guān)于已知直線的對稱直線 求直線關(guān)于直線的對稱直線: ①若直線、相交,先求出交點(diǎn)。在直線上取一特殊點(diǎn),求點(diǎn)關(guān)

5、于直線的對稱點(diǎn),直線即直線。 ②若直線、平行,根據(jù)平行設(shè)出所求直線方程的一般式形式,再利用兩平行線間的距離公式求出待定系數(shù)。 【規(guī)律總結(jié)】 1. 設(shè)直線: ①關(guān)于軸對稱的直線是:; ②關(guān)于軸對稱的直線是:; ③關(guān)于原點(diǎn)對稱的直線是:; ④關(guān)于對稱的直線是:; ⑤關(guān)于對稱的直線是:。 2. ①點(diǎn)關(guān)于軸的對稱點(diǎn); ②點(diǎn)關(guān)于軸的對稱點(diǎn); ③點(diǎn)關(guān)于軸的對稱點(diǎn); ④點(diǎn)關(guān)于軸的對稱點(diǎn); ⑤點(diǎn)關(guān)于軸的對稱點(diǎn); ⑥點(diǎn)關(guān)于軸的對稱點(diǎn); ⑦點(diǎn)關(guān)于軸的對稱點(diǎn); ⑧點(diǎn)關(guān)于軸的對稱點(diǎn)。 例題1 (點(diǎn)到直線的距離公式及其應(yīng)用) 求點(diǎn)P(1,2)到下列直線的距離:(1)l1:y

6、=x-3;(2)l2:y=-1;(3)y軸。 思路分析:點(diǎn)的坐標(biāo)→直線方程化成一般式→點(diǎn)到直線的距離。 答案:(1)將直線方程化為一般式為:x-y-3=0,如圖, 由點(diǎn)到直線的距離公式得d1==2。 (2)方法一 直線方程化為一般式為:y+1=0, 由點(diǎn)到直線的距離公式得 d2==3。 方法二 ∵y=-1平行于x軸,如圖, ∴d2=|-1-2|=3。 (3)方法一 y軸的方程為x=0,由點(diǎn)到直線的距離公式得d3==1. 方法二 如圖可知,d3=|1-0|=1。 技巧點(diǎn)撥:應(yīng)用點(diǎn)到直線的距離公式應(yīng)注意的三個問題: 1. 直線方程應(yīng)為一般式,若給出其他形式應(yīng)化

7、為一般式。 2. 點(diǎn)P在直線l上時,點(diǎn)到直線的距離為0,公式仍然適用。 3. 直線方程Ax+By+C=0中,A=0或B=0時公式也成立,但由于直線是特殊直線(與坐標(biāo)軸垂直),故也可用數(shù)形結(jié)合思想求解。 例題2 (兩條平行直線間的距離) 求兩條平行直線l1:6x+8y=20和l2:3x+4y-15=0的距離。 思路分析:解答本題可先在直線l1上任取一點(diǎn)A(2,1),然后再求點(diǎn)A到直線l2的距離即為兩條平行直線間的距離;或者直接應(yīng)用兩條平行線間的距離公式d=求解。 答案:方法一 若在直線l1上任取一點(diǎn)A(2,1),則點(diǎn)A到直線l2的距離即為所求的平行線間的距離, 則d==1.

8、 方法二 l1:3x+4y-10=0,l2:3x+4y-15=0, 故d==1. 技巧點(diǎn)撥:針對這種類型的題目一般有兩種思路: 1. 利用“化歸”思想將兩平行直線的距離轉(zhuǎn)化為求其中一條直線上任意一點(diǎn)到另一條直線的距離。 2. 直接應(yīng)用公式d=,但要注意兩直線方程中x、y的系數(shù)必須分別相同。 對稱在求最值中的應(yīng)用 【滿分訓(xùn)練】在直線:上, (1)求一點(diǎn),使到和的距離之差最大; (2)求一點(diǎn),使到和的距離之和最小。 思路分析:設(shè)關(guān)于的對稱點(diǎn)為,與的交點(diǎn)滿足(1);設(shè)關(guān)于的對稱點(diǎn)為,與的交點(diǎn)滿足(2)。事實上,對于(1),若是異于的點(diǎn),則;對于(2),若是異于的點(diǎn),則。 答案:(1)如圖所示,設(shè)關(guān)于的對稱點(diǎn)為,則,即, ① 又由于的中點(diǎn)坐標(biāo)為,且在直線上, ,即 ② 解①②式得 于是所在直線的方程為,即 解與組成的方程組得 即與的交點(diǎn)坐標(biāo)為,為所求。 (2)如圖,設(shè)關(guān)于的對稱點(diǎn)為,同(1)中方法求出的坐標(biāo)為, 所在直線的方程為, 聯(lián)立和的方程,解出其交點(diǎn)坐標(biāo)為 為所求。 技巧點(diǎn)撥:本題屬于求最值問題,它利用幾何中的對稱方法解決,體現(xiàn)了數(shù)形結(jié)合的思想。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!