2022高中數(shù)學(xué) 第2章 數(shù)列 2.3 等差數(shù)列的前n項(xiàng)和學(xué)案 蘇教版必修5

上傳人:xt****7 文檔編號(hào):105693010 上傳時(shí)間:2022-06-12 格式:DOC 頁(yè)數(shù):3 大?。?65.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022高中數(shù)學(xué) 第2章 數(shù)列 2.3 等差數(shù)列的前n項(xiàng)和學(xué)案 蘇教版必修5_第1頁(yè)
第1頁(yè) / 共3頁(yè)
2022高中數(shù)學(xué) 第2章 數(shù)列 2.3 等差數(shù)列的前n項(xiàng)和學(xué)案 蘇教版必修5_第2頁(yè)
第2頁(yè) / 共3頁(yè)
2022高中數(shù)學(xué) 第2章 數(shù)列 2.3 等差數(shù)列的前n項(xiàng)和學(xué)案 蘇教版必修5_第3頁(yè)
第3頁(yè) / 共3頁(yè)

最后一頁(yè)預(yù)覽完了!喜歡就下載吧,查找使用更方便

9.9 積分

下載資源

資源描述:

《2022高中數(shù)學(xué) 第2章 數(shù)列 2.3 等差數(shù)列的前n項(xiàng)和學(xué)案 蘇教版必修5》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022高中數(shù)學(xué) 第2章 數(shù)列 2.3 等差數(shù)列的前n項(xiàng)和學(xué)案 蘇教版必修5(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022高中數(shù)學(xué) 第2章 數(shù)列 2.3 等差數(shù)列的前n項(xiàng)和學(xué)案 蘇教版必修5 一、考點(diǎn)突破 知識(shí)點(diǎn) 課標(biāo)要求 題型 說(shuō)明 等差數(shù)列的前n項(xiàng)和 1. 掌握等差數(shù)列前n項(xiàng)和的公式,并能運(yùn)用公式解決一些簡(jiǎn)單問(wèn)題; 2. 體會(huì)等差數(shù)列前n項(xiàng)和公式與二次函數(shù)間的關(guān)系 選擇題 填空題 等差數(shù)列前n項(xiàng)和還要注意兩點(diǎn):公式推導(dǎo)的方法和函數(shù)的思想 二、重難點(diǎn)提示 重點(diǎn):運(yùn)用等差數(shù)列前n項(xiàng)和的公式解決一些問(wèn)題。 難點(diǎn):等差數(shù)列前n項(xiàng)和公式與二次函數(shù)間的關(guān)系。 考點(diǎn)一:等差數(shù)列前n項(xiàng)和公式及推導(dǎo) (1)等差數(shù)列的前n項(xiàng)和公式 Sn==na1+ (2) 等差數(shù)列的前

2、n項(xiàng)和公式的推導(dǎo): ∵Sn=a1+a2+…+an, Sn=an+an-1+…+a1, ∴2Sn=(a1+an)+(a2+an-1)+…+(an+a1), =n(a1+an), ∴Sn=n(a1+an) 這種推導(dǎo)方法稱為倒序求和法。 【核心突破】 (1)由等差數(shù)列的前n項(xiàng)和公式及通項(xiàng)公式可知,若已知a1、d、n、an、Sn中三個(gè)便可求出其余兩個(gè),即“知三求二”?!爸蠖钡膶?shí)質(zhì)是方程思想,即建立方程組求解。 (2)在運(yùn)用等差數(shù)列的前n項(xiàng)和公式來(lái)求和時(shí),一般地,若已知首項(xiàng)a1及末項(xiàng)an用公式Sn=較方便;若已知首項(xiàng)a1及公差d用公式Sn=na1+d較好。 (3)在運(yùn)用公式S

3、n=求和時(shí),要注意性質(zhì)“設(shè)m、n、p、q均為正整數(shù),若m+n=p+q,則am+an=ap+aq”的運(yùn)用。 (4)在求和時(shí)除了直接用等差數(shù)列的前n項(xiàng)和公式求和(即已知數(shù)列是等差數(shù)列)外,還要注意創(chuàng)設(shè)運(yùn)用公式條件(即將非等差數(shù)列問(wèn)題轉(zhuǎn)化為等差數(shù)列問(wèn)題),以利于求和。 考點(diǎn)二:等差數(shù)列前n項(xiàng)和的性質(zhì) 數(shù)列{an}為等差數(shù)列,前n項(xiàng)和為Sn,則有如下性質(zhì): (1)Sm,S2m-Sm,S3m-S2m,…,也是等差數(shù)列,公差為m2d。 (2)若項(xiàng)數(shù)為偶數(shù)2n(n∈N*),則S偶-S奇=nd,=。 (3)若項(xiàng)數(shù)為奇數(shù)2n+1(n∈N*),則S奇-S偶=an+1,=。 (4)若{an}、{b

4、n}均為等差數(shù)列,前n項(xiàng)和分別為Sn和Tn,則。 考點(diǎn)三:等差數(shù)列前n項(xiàng)和的最值 解決等差數(shù)列前n項(xiàng)和的最值的基本思想是利用前n項(xiàng)和公式與函數(shù)的關(guān)系解決問(wèn)題,即: (1)二次函數(shù)法:用求二次函數(shù)的最值的方法來(lái)求前n項(xiàng)和的最值,但要注意的是:。 (2)圖象法:利用二次函數(shù)的對(duì)稱性來(lái)確定的值,使取最值。 (3)通項(xiàng)法:當(dāng)時(shí),為使成立的最大的自然數(shù)時(shí),最大。這是因?yàn)楫?dāng)時(shí),,即遞增;當(dāng)時(shí),,即遞減。 類似的,當(dāng)時(shí),則為使成立的最大的自然數(shù)時(shí),最小。 例題1(等差數(shù)列前n項(xiàng)和公式的應(yīng)用) 在等差數(shù)列{an}中,前n項(xiàng)和為Sn。 (1)已知S8=48,S12=168,求a1和

5、d; (2)已知a6=10,S5=5,求a8和S8; (3)已知a3+a15=40,求S17。 思路分析:(1)利用前n項(xiàng)和公式,建立關(guān)于a1、d的方程組,解方程組求a1、d; (2)根據(jù)前n項(xiàng)和公式求a1、d,再求a8和S8; (3)先根據(jù)等差數(shù)列的性質(zhì)求a1+a17,再求S17。 答案:(1)由等差數(shù)列的前n項(xiàng)和公式, 得 解得 (2)∵a6=S6-S5,∴S6=S5+a6=15, ∴×6=15,即3(a1+10)=15, ∴a1=-5,∴d==3, ∴a8=a6+2d=16,S8=×8=44; (3)根據(jù)等差數(shù)列的性質(zhì),有a3+a15=a1+a17=40, ∴

6、S17==340。 技巧點(diǎn)撥: 1. 本題第(3)問(wèn)看似缺少條件,但注意到a3+a15與a1+a17的聯(lián)系,便可以很容易地求出結(jié)果,所以應(yīng)注意各元素之間的某些特殊聯(lián)系。 2. 對(duì)于兩個(gè)求和公式Sn=和Sn=na1+,要根據(jù)題目的已知條件靈活選用。 例題2(等差數(shù)列前n項(xiàng)和的最值) 已知等差數(shù)列{an}中,a1=13且S3=S11,那么n取何值時(shí),Sn取得最大值?并求出Sn的最大值。 思路分析:先根據(jù)前n項(xiàng)和公式求公差d,再求出Sn的表達(dá)式,轉(zhuǎn)化成二次函數(shù)在N*上的最值問(wèn)題;也可求出公差d后,利用通項(xiàng)公式an的符號(hào)解決。 答案:方法一 設(shè)公差為d,由S3=S11得3×13+d=

7、11×13+d,d=-2,又a1=13,∴Sn=n2+(a1-)n=-n2+14n=-(n-7)2+49, ∴當(dāng)n=7時(shí),Sn取得最大值,最大值是S7=49; 方法二 同方法一得 d=-2,an=13-2(n-1)=15-2n, 由 即 解得6.5≤n≤7.5, ∴當(dāng)n=7時(shí),Sn取得最大值, ∴Sn的最大值是S7==49; 方法三 同方法一得d=-2 又由S3=S11知a4+a5+a6+a7+a8+a9+a10+a11=4(a7+a8)=0, ∵a1=13>0, ∴a7≥0,a8≤0,知數(shù)列的前7項(xiàng)和最大, ∴S7=7×13+×(-2)=49。 技巧點(diǎn)撥: 1.

8、 本題中方法一利用二次函數(shù)的最值確定n值;方法二利用等差數(shù)列的通項(xiàng)公式確定n值;方法三利用等差數(shù)列的性質(zhì),由條件本身的特點(diǎn)確定n值。 2. 求等差數(shù)列前n項(xiàng)和的最值的常見(jiàn)方法: (1)方法一:利用通項(xiàng)公式確定n值 ①若a1>0,d<0,則Sn有最大值,n可由不等式組來(lái)確定; ②若a1<0,d>0,則Sn有最小值,n可由不等式組來(lái)確定。 (2)方法二:利用二次函數(shù)的最值確定n值 等差數(shù)列的前n項(xiàng)和為Sn,當(dāng)d≠0時(shí),點(diǎn)(n,Sn)是二次函數(shù)y=ax2+bx(a≠0)上的間斷點(diǎn),因此可利用二次函數(shù)的最值確定n值。 一類與等差數(shù)列有關(guān)的含絕對(duì)值的數(shù)列的求和 【滿分訓(xùn)練】已知數(shù)列為等差數(shù)列,,求 思路分析:所求和中關(guān)鍵是去掉絕對(duì)值,故根據(jù)的正負(fù)去掉絕對(duì)值。先確定各項(xiàng)的正負(fù),再根據(jù)正負(fù)去掉絕對(duì)值,然后求和。 答案:由于有正也有負(fù),當(dāng)≥0時(shí),;當(dāng)<0時(shí),。 當(dāng)≥0時(shí),,所以 技巧點(diǎn)撥: 這類數(shù)列的求和問(wèn)題的易錯(cuò)點(diǎn)是未考慮的情形,或者考慮了,但認(rèn)為它是一個(gè)常數(shù)。

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!