《2022高考數(shù)學大二輪復習 專題8 解析幾何 第1講 基礎小題部分真題押題精練 理》由會員分享,可在線閱讀,更多相關《2022高考數(shù)學大二輪復習 專題8 解析幾何 第1講 基礎小題部分真題押題精練 理(4頁珍藏版)》請在裝配圖網上搜索。
1、2022高考數(shù)學大二輪復習 專題8 解析幾何 第1講 基礎小題部分真題押題精練 理
1. (2018·高考全國卷Ⅱ)雙曲線-=1(a>0,b>0)的離心率為,則其漸近線方程為 ( )
A.y=±x B.y=±x
C.y=±x D.y=±x
解析:雙曲線-=1的漸近線方程為bx±ay=0.
又∵離心率==,
∴a2+b2=3a2,∴b=a(a>0,b>0).
∴漸近線方程為ax±ay=0,即y=±x.故選A.
答案:A
2.(2018·高考全國卷Ⅲ)直線x+y+2=0分別與x軸,y軸交于A,B兩點,點P在圓(x-2)2+y2=2上,則△A
2、BP面積的取值范圍是 ( )
A.[2,6] B.[4,8]
C.[,3] D.[2,3]
解析:設圓(x-2)2+y2=2的圓心為C,半徑為r,點P到直線x+y+2=0的距離為d,則圓心C(2,0),r=,所以圓心C到直線x+y+2=0的距離為2,可得dmax=2+r=3,dmin=2-r=.由已知條件可得AB=2,所以△ABP面積的最大值為AB·dmax=6,△ABP面積的最小值為AB·dmin=2.
綜上,△ABP面積的取值范圍是[2,6].故選A
答案:A
3.(2017·高考全國卷Ⅲ)已知橢圓C:+=1(a>b>0)的左、右頂點分別為A1、A2,且以線段A1A2
3、為直徑的圓與直線bx-ay+2ab=0相切,則C的離心率為 ( )
A. B.
C. D.
解析:以線段A1A2為直徑的圓的方程為x2+y2=a2,由原點到直線bx-ay+2ab=0的距離
d==a,得a2=3b2,
所以C的離心率e==.
答案:A
4.(2017·高考全國卷Ⅰ)已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1,l2,直線l1與C交于A,B兩點,直線l2與C交于D,E兩點,則|AB|+|DE|的最小值為 ( )
A.16 B.14
C.12 D.10
解析:拋物線C:y2=4x的焦點為F(1,0),
4、
由題意可知l1,l2的斜率存在且不為0.
不妨設直線l1的斜率為k,
則l1:y=k(x-1),l2:y=-(x-1),
由消去y得k2x2-(2k2+4)x+k2=0,
設A(x1,y1),B(x2,y2),
∴x1+x2==2+,
由拋物線的定義可知,
|AB|=x1+x2+2=2++2=4+.
同理得|DE|=4+4k2,
∴|AB|+|DE|=4++4+4k2=8+4≥8+8=16,當且僅當=k2,即k=±1時取等號,
故|AB|+|DE|的最小值為16.
答案:A
1. 在平面直角坐標系xOy中,已知P(3,-1)在圓C:x2+y2-2mx-2y+m2-
5、15=0內,動直線AB過點P且交圓C于A,B兩點,若△ABC的面積的最大值為8,則實數(shù)m的取值范圍是 ( )
A.(3-2,3+2)
B.[1,5]
C.(3-2,1]∪[5,3+2)
D.(-∞,1]∪[5,+∞)
解析:由題意知點P(3,-1)在圓C:(x-m)2+(y-1)2=16內,
則(3-m)2+(-1-1)2<16,
即3-2
6、得m≤1或m≥5,
所以m的取值范圍為(3-2,1]∪[5,3+2).故選C.
答案:C
2.若P為雙曲線-=1(a>0,b>0)的右支上不在x軸上的任意一點,F(xiàn)1、F2分別為雙曲線的左、右焦點,△PF1F2的內切圓與x軸的切點為M(m,0) (b≤m≤2b),則該雙曲線的離心率的最大值為 ( )
A. B.
C.2 D.
解析:設F1(-c,0),F(xiàn)2(c,0),
則|PF1|-|PF2|=2a.
因為△PF1F2的內切圓與x軸的切點是點M,結合圓的切線長定理知|MF1|-|MF2|=|PF1|-|PF2|=2a,所以(m+c)-(c-m)=2m=2a,
7、
又b≤m≤2b,所以b≤a≤2b,
所以≤≤,即≤()2≤3.
因為e2=1+()2,所以≤e2≤4,
即≤e≤2.所以該雙曲線的離心率的最大值為2.故選C.
答案:C
3.已知過定點P的直線l:mx-y-m+2=0與圓心為C的圓(x-6)2+(y-2)2=9交于A,B兩點,若△ACP與△BCP的面積之和為10,則|AB|=________.
解析:由已知可得P(1,2),C(6,2),所以|PC|=5.
設AB的中點為D,連接CD(圖略),
則由對稱性知S△ACD=S△BCD,
所以S△ACP+S△BCP=2S△DCP=|DP|·|CD|=10,
又|DP|2+|CD|
8、2=|PC|2=25,且|CD|<3,
解得|CD|=,故|AB|=2=4.
答案:4
4.已知直線l1:4x-3y+6=0和直線l2:x=-1,拋物線y2=4x上一動點P到直線l1和l2的距離之和的最小值是________.
解析:設拋物線上的一點P的坐標為(a2,2a),(參數(shù)的設定,盡可能簡捷,能設一參不引進二參)
則點P到直線l1:4x-3y+6=0的距離
d1=,點P到直線l2:x=-1的距離d2=a2+1,
所以d1+d2=a2+1+=a2+1+(建立目標函數(shù)后,盡可能化簡,由于4a2-6a+6=4(a-)2+>0,故可直接去掉絕對值符號)
==(a2-a)+=(a-)2+2,(用配方法求最值)
所以當a=時,動點P到直線l1和l2的距離之和最小,最小值為2.
答案:2