0125-拉鉤的冷沖模設計【全套5張CAD圖+文獻翻譯+說明書】
0125-拉鉤的冷沖模設計【全套5張CAD圖+文獻翻譯+說明書】,全套5張CAD圖+文獻翻譯+說明書,拉鉤,沖模,設計,全套,cad,文獻,翻譯,說明書,仿單
文獻綜述
題 目: 拉鉤的冷沖模設計
一、模具工業(yè)的分類
我國模具設計與制造技術的發(fā)展經(jīng)歷了手工作坊制造階段、工業(yè)化生產(chǎn)階段和現(xiàn)代化生產(chǎn)階段。伴隨著計算機技術的快速發(fā)展, 數(shù)字化、信息化CADCAE/CAM技術和數(shù)控加工機床已普遍采用, 模具產(chǎn)業(yè)正處于高速發(fā)展階段。
模具是制造業(yè)的重要基礎工藝裝備。模具總體上可分為兩大類: 金屬材料制件成形模具,如沖壓模具、鍛造模具、壓鑄模具、擠壓模具、拉絲模具、粉末冶金模具等; 非金屬材料制件成形模具, 如塑料注射模具、壓鑄模具、擠出模具, 橡膠制件、玻璃制件和陶瓷制件成形模具等。模具的具體分類方法很多, 如按模具結構形式分, 沖壓模具可分為簡單模、連續(xù)模和復合模, 注塑模具可分為單分型面和雙分型面注塑模具等; 按工藝性質(zhì)分, 沖壓模具可分為沖孔模、落料模、拉深模、彎曲模,塑模具可分為壓塑模、傳遞模、注射模等。[1]
其中沖壓模具、塑料模具、鑄造模具、鍛壓模具、橡膠模具、粉末冶金模具、拉絲模具、無機材料成形模具等是最主要的八大類, 用于制造業(yè)中的幾乎所有產(chǎn)品的生產(chǎn)。[7]
二、模具工業(yè)的地位
模具是以其特定的形狀通過一定的方式使原材料成型。隨著社會的發(fā)展和科技的進步, 模具行業(yè)越來越被重視,模具技術在國民經(jīng)濟各個部門都得到廣泛的應用,它不僅與整個機械行業(yè)密切相關,而且與人們的生活密切相關。模具工業(yè)是國民經(jīng)濟的基礎產(chǎn)業(yè),是“百
業(yè)之母”,是永不衰亡的行業(yè),模具工業(yè)的發(fā)展水平標志著一個國家的工業(yè)水平及產(chǎn)品開發(fā)的能力。“十五” 規(guī)劃指出,模具是生產(chǎn)各種工業(yè)產(chǎn)品的重要基礎工藝裝備,國民經(jīng)濟的五大支柱產(chǎn)業(yè)—機械、電子、汽車、石化、建筑等都要求模具工業(yè)的發(fā)展與之相適應。
模具因其生產(chǎn)效率高、產(chǎn)品質(zhì)量好、材料消耗低、操作簡單、生產(chǎn)過程易于實現(xiàn)機械化與自動化、生產(chǎn)成本低而獲得廣泛應用,利用模具可以加工出薄壁、重量輕、剛性好、形狀復雜的零件;產(chǎn)品質(zhì)量有模具保證,具有一模一樣的的特點;這是其它加工制造業(yè)所無法完成的;模具是現(xiàn)代工業(yè),特別是汽車、摩托車、航空、儀表、儀器、醫(yī)療器械、電子通信、兵器、家用電器、五金工具、日用品等工業(yè)必不可少的工藝裝備。據(jù)資料統(tǒng)計,利用模具制造的零件數(shù)量,在飛機、汽車、摩托車、拖拉機、電機、電器、儀器儀表等機電產(chǎn)品中占80%以上;在電腦、電視機、攝像機、照相機、錄像機等電子產(chǎn)品中占85%以上;在電冰箱、洗衣機、空調(diào)、電風扇、自行車、手表等輕工業(yè)產(chǎn)品中占90%以上;在子彈、槍支等兵器產(chǎn)品中占95%以上;在日用金屬產(chǎn)品中占95%以上??梢?,研究和發(fā)展模具技術,對于促進國民經(jīng)濟的發(fā)展具有特別重要的意義。目前,模具技術已成為衡量一個國家產(chǎn)品制造水平的重要標志之一。[2]
起步到現(xiàn)在,我國模具工業(yè)經(jīng)歷了半個多世紀的發(fā)展,已有了較大的提高,與國外的差距正在進一步縮小。而中國模具對世界的影響也在不斷擴大, 主要表現(xiàn)在以下幾點:
1、ISTMA 和FADMA 及其他國家的模協(xié)和有關國際組織已越來越重視中國模協(xié), 他們邀請中國模協(xié)出席國際會議和參加國際行業(yè)活動越來越多, 他們到中國來考察和交流也越來越多, 中國模具已經(jīng)成為國際模具中的一個不可忽視的力量。
2、隨著國際交往的日益增多和外資(包括港資、合資) 在中國模具行業(yè)的投入日漸增加, 中國模具正表現(xiàn)得越來越融入世界, 并已逐步與國際接軌, 三資企業(yè)已對中國模具的發(fā)展作出了很大貢獻,中國模具和世界模具已越來越密不可分。
3、無論是出口還是在中國國內(nèi)使用, 中國模具已經(jīng)為境外企業(yè)和境內(nèi)三資企業(yè)降低了不少生產(chǎn)成本, 也就是說, 為世界的進步做出了一些貢獻,而且這一貢獻將隨著中國模具的進一步發(fā)展而不斷增大。中國模具與世界正在實現(xiàn)共贏。
4、由于中國的過去、現(xiàn)在和不久的將來一直有較為優(yōu)秀且豐富和廉價的人力資源、龐大的市場及其他許多有利條件, 外資在中國模具中已經(jīng)并且將進一步占據(jù)越來越重要的地位, 中國已成為承接工業(yè)發(fā)達國家模具業(yè)轉(zhuǎn)移的良好目的地, 確實加速了世界模具產(chǎn)業(yè)的轉(zhuǎn)移, 從而也為通過這種轉(zhuǎn)移而使工業(yè)發(fā)達國家向更高層次發(fā)展做出了貢獻。
5、中國龐大的模具市場促進了世界模具的發(fā)展。
從上述情況來看, 中國模具確實已經(jīng)與世界模具密不可分, 而且中國模具在世界模具中的地位將會越來越重要, 其影響也會越來越大。中國模具加速融入世界并實現(xiàn)國際共贏的局面將會進一步發(fā)展下去。在當今的信息社會和世界經(jīng)濟進一步全球化的發(fā)展過程中,世界在促進中國模具的發(fā)展,中國模具也正在并將進一步促進世界的發(fā)展。[9]
三、我國模具工業(yè)的現(xiàn)狀
模具屬于邊緣科學,它涉及機械設計制造、塑性加工、鑄造、金屬材料及其熱處理、高分子材料、金屬物理、凝固理論、粉末冶金、塑料、橡膠、玻璃等諸多學科、領域和行業(yè)。
從中國模具工業(yè)協(xié)會獲悉, 近年來在國民經(jīng)濟中占有重要地位的模具工業(yè)得到了迅速發(fā)展。模具是工業(yè)生產(chǎn)的基礎工藝裝備在電子、汽車、電機電器、儀表、家電和通訊等產(chǎn)品中, 一般的零部件都依靠模具成型。國民經(jīng)濟的五大支柱產(chǎn)業(yè), 機械, 電子、汽車、石化、建筑都要求模具工業(yè)的發(fā)展與之相適應, 模具是“ 效益放大器”, 用模具生產(chǎn)的最終產(chǎn)品價值, 往往是模具自身價值的幾十倍、上百倍。模具生產(chǎn)水平的高低, 己成為衡量一個國家產(chǎn)品制造水平高低的重要標志, 在很大程度上決定著產(chǎn)品的質(zhì)量、效益和新產(chǎn)品的開發(fā)能力。因此, 振興和發(fā)展我國的模具工業(yè),日益受到人們的重視和關注國務院頒布的《關于當前產(chǎn)業(yè)政策要點的丸定》也把模具列為機械工業(yè)改造序列的第一位、生產(chǎn)和基本建設序列的第二位。由于我國模具工業(yè)發(fā)展迅速, 前景廣闊, 國內(nèi)外模具及模具加工設備廠商已普遍看好中國市場??v觀我國的模具工業(yè),既有高速發(fā)展的良好勢頭,又存在精度低、結構欠合理、壽命短等一系列不足,無法滿足整個工業(yè)迅速發(fā)展的迫切要求。[3]
近年來,我國模具工業(yè)的迅速發(fā)展是大家有目共睹的,中國模具工業(yè)的現(xiàn)狀大致可以從以下3個方面來講:
1、模具的產(chǎn)值與出口量增長明顯。從整體情況來看,我國已經(jīng)步入模具工業(yè)大國之列,但是距模具強國還有相當差距。
2、模具制造水平不斷提高。近幾年,以大型、精密、復雜、長壽命模具為代表的、技術含量較高的中高檔模具的比重進一步提高,現(xiàn)在中高檔模具所占比重已經(jīng)達到35% 以上。模具的設計和制造水平也有了很大的發(fā)展,很多先進的模具設計與制造技術在我國的模具企業(yè)中得到應用,如CAD/CAE/CAM 等計算機輔助技術、高速加工技術、熱流道技術、氣輔技術、逆向工程等新技術得到廣泛應用,E R P、P D M 等信息化管理技術正得到積極推廣,這些先進技術的應用和信息化管理的實施極大地提高了模具企業(yè)的生產(chǎn)效率,縮短了生產(chǎn)周期。
3、我國模具行業(yè)已經(jīng)形成了自己的骨干隊伍。目前,我國約有模具生產(chǎn)廠點3 萬余家,從業(yè)人員100余萬人,在各個模具行業(yè)的骨干企業(yè)隊伍中也涌現(xiàn)出了本行業(yè)的龍頭企業(yè)。他們的生產(chǎn)裝備先進,生產(chǎn)達到了一定規(guī)模,技術水平較高,而且產(chǎn)品具有自己的特點。[10]
目前,中國約有模具生產(chǎn)廠2萬余家,從業(yè)人員50多萬人,全年模具產(chǎn)值達450億元人民幣以上。近年來,模具行業(yè)結構調(diào)整步伐加快,主要表現(xiàn)為大型、精密、復雜、長壽命模具和模具標準件發(fā)展速度高于行業(yè)的總體發(fā)展速度;塑料模和壓鑄模比例增大;面向市場的專業(yè)模具廠家數(shù)量及能力增加較快。隨著經(jīng)濟體制改革的不斷深入,“三資”及民營企業(yè)的發(fā)展很快。[5]
在模具產(chǎn)值產(chǎn)量和進出口迅速發(fā)展的同時, 近年來中國在模具行業(yè)技術進步和模具水平的提高方面也取得了可喜的成績?,F(xiàn)在, 我國已能生產(chǎn)精度達到詳?shù)亩喙の患夁M模, 壽命可達億沖次以上。個別企業(yè)生產(chǎn)的多工位級進模已可在次的高速沖床上使用, 精度可達林。在大型塑料模具方面, 我國已能生產(chǎn)英寸大屏幕彩電和英寸背投式電視的塑殼模具、大容量洗衣機全套塑料件模具以及汽車保險杠、整體儀表板塑料模具等。在精密塑料模具方面, 我國已能生產(chǎn)照相機和手機塑料件模具、多型腔小模數(shù)齒輪模具及精度達林的腔塑封模具等,精度達到林的光盤模也已能夠生產(chǎn)了。塑料模具的熱流道和氣輔等技術水平不斷提高。在大型精密復雜壓鑄模方面, 國內(nèi)已能生產(chǎn)自動扶梯整體踏板壓鑄模、汽車后橋齒輪箱壓鑄模以及汽車發(fā)動機殼體的鑄造模具等。在汽車覆蓋件模具方面,國內(nèi)已能生產(chǎn)中檔新型轎車的覆蓋件模具, 高檔轎車的部分覆蓋件模具也已能夠生產(chǎn)了。子午線輪胎活絡模具、鋁合金和塑料門窗異型材擠出成形模、精鑄或樹脂快速成型拉延模等, 也已達到相當高的水平, 制造出來的模具可與進口模具媲美。國內(nèi)生產(chǎn)的最大模具單套重量已超過100t我國模具企業(yè)CAD、CAM、CAE、CAPP、PDM、PLM、ERP等數(shù)字、化信息化技術的使用面正在不斷擴大, 水平也在不斷提高。
中國模具工業(yè)產(chǎn)值僅次于日本和美國, 排在世界前三位。中國經(jīng)濟的高速發(fā)展同樣對模具工業(yè)提出了越來越高的要求, 也為其發(fā)展提供了巨大的空間?,F(xiàn)今, 國內(nèi)的模具生產(chǎn)廠家已增至2 萬余家, 模具制造從業(yè)人員已超過50 多萬人, 模具的年產(chǎn)值達到534 億元人民幣。近10 年來, 國內(nèi)模具在數(shù)量、質(zhì)量、技術等方面有了很大的跨躍; 現(xiàn)正以每年15 %左右的增長速度穩(wěn)步發(fā)展。[4]
四、現(xiàn)代模具設計與制造方法
現(xiàn)代模具制造業(yè)已成為技術密集型和資金密集型的產(chǎn)業(yè), 它與高新技術已形成相互依托的關系。一方面, 模具是直接為高新技術產(chǎn)業(yè)化服務的不可缺少的裝備另一方面, 模具生產(chǎn)本身又大量采用高新技術及裝備, 因此, 模具制造已成為高新技術產(chǎn)業(yè)的重要組成部分。模具成形零件時實現(xiàn)快速、優(yōu)質(zhì)、低耗是國家可持續(xù)發(fā)展戰(zhàn)略的要求。[7]
我國模具制造技術發(fā)展迅速,逐漸由單一、具體、細節(jié)的設計及各道工序的加工過程向設計、制造技術的系統(tǒng)化、集成化過程轉(zhuǎn)變,已成為現(xiàn)代先進制造技術的重要組成部分。
1、模具CAD/CAE/CAM技術:以三維造型為主的模具設計、制造、工藝信息的數(shù)字化傳遞及轉(zhuǎn)換所形成的CAD/CAE/CAM一體化技術在我國已大量推廣應用。例如,汽車大型覆蓋件模具已普遍應用CAD/CAM技術,實現(xiàn)了模具設計、制造、沖壓一體化、數(shù)控編程和數(shù)控加工實現(xiàn)了DNC,計算機軟硬件配置已接近國際水平;在塑料模具方面也已廣泛應用CAD/CAE/CAM技術,多項國內(nèi)自主開發(fā)的軟件推廣之中,如北航華正的CAXA軟件系列和華中理工大學的HSC2.0等;在壓鑄模方面,CAD/CAM同樣得到了廣泛應用,并已開始應用CAE軟件進行澆道系統(tǒng)和工藝參數(shù)等方面的優(yōu)化分析。
2、模具先進制造工藝及裝備:模具由功能件和支持件組成。在塑料模和壓鑄模中,功能件為型腔和型芯,在鍛模中為型腔,在沖壓模具中為型孔和沖頭,支持件一般為標準件,因此,模具加工的主要部件可分為兩類,即型腔,型芯加工和型孔加工。
(1)高速銑削加工
高速銑削加工在模具制造中具有以下特點:高效,高速銑削加工的主軸轉(zhuǎn)速一般為15000-40000r/min,最高可達100000r/min。切削鋼時,其切削速度約為400m/min,比傳統(tǒng)的銑削加工高5~10倍;在加工型腔模時與傳統(tǒng)的加工方法相比起效率提高4-5倍;與完全采用EDM加工相比,其加工速度提高了4-8倍;高精度,一般加工精度為10m,有的精度更高;高表面質(zhì)量,由于高速銑削的工具溫度小,姑表面沒有變質(zhì)層及微裂紋,熱變形也小。最好的表面粗糙度R小于1m;可加工高硬材料,可銑削50~54HRC。
(2)NCEDM加工
NCEDM的多軸聯(lián)動控制、電極自動交換、C軸加工、數(shù)控擺動等功能能完成各種復雜型腔的精密加工,采用自適應控制、模糊控制、各種專家系統(tǒng)、新型脈沖電源燈優(yōu)化加工狀態(tài),自動完成全部加工過程。NCEDM在中小型腔模、復雜精密型腔模等加工方面發(fā)揮著越來越重要的作用。
(3)虛擬軸數(shù)控加工
在模具復雜型腔銑削加工中采用五軸數(shù)控銑床可提高加工質(zhì)量和效率。五軸數(shù)控加工還可在三軸聯(lián)動加工不易接近的地方進行加工,以避免銑刀中心銑削工作帶來的弊端,并能在一次裝夾中完成五面加工,因此更適合于模具制造。虛擬軸五軸數(shù)控機床突破了傳統(tǒng)的串聯(lián)式床身滑臺結構,由于采用了高級軟件、降低了傳統(tǒng)五軸數(shù)控銑床結構的復雜性,因此,結構簡單,成本低。虛擬軸五軸數(shù)控機床也可實現(xiàn)高速加工,尤其適合復雜型腔的銑削、磨削和測量,是我國模具制造工藝及裝備的重要發(fā)展方向。
(4)復合加工
復合加工時指在一臺機床上進行兩種或兩種以上不同加工工藝的復合,以實現(xiàn)不同加工工藝優(yōu)勢互補的作用。其發(fā)展方向又可分為兩個方向:銑削加工與激光加工復合技術,銑削加工與EDM復合技術。
(5)型孔加工工藝及裝備
沖壓模等型孔加工主要依靠磨削加工及數(shù)控電火花線切割加工(WEDM)。在磨削加工中,成形磨、坐標磨、光曲磨等精密加工工藝及裝備在我國已廣泛應用。WEDM在沖壓模等型孔加工中已起到不可替代的作用。國內(nèi)外沖壓模等加工都離不開WEDM。主要方向有:磨削加工、WEDM加工。[6]
五、我國模具行業(yè)存在的問題
目前, 我國模具總量雖然已達到相當大的規(guī)模, 模具水平也已有了很大提高, 但在總體上, 我國模具生產(chǎn)的商品化、專業(yè)化、標淮化程度還較低, 商品化模具只占左右, 模具標準件使用覆蓋率還不到, 專業(yè)模具企業(yè)只占模具生產(chǎn)廠點的少數(shù), 而且裝備也比較落后。由于資金缺乏, 我國的模具企業(yè)大都只能購買較低檔的國產(chǎn)設備和來自我國臺灣的設備, 而少用歐美和日本的高檔設備, 設備數(shù)控化程度遠低于國際水平。我國模具設計制造水平在總體上要比工業(yè)發(fā)達國家落后許多。
主要存在以下幾點問題:
1、產(chǎn)品質(zhì)量不高:當前我國模具生產(chǎn)廠中多數(shù)是“大而全”、“小而全”,國外模具企業(yè)大多是“小而?!?、“小而精”。國內(nèi)模具總量中屬大型、精密、復雜、長壽命模具的比例只有30% 左右,國外在50%以上。國內(nèi)模具生產(chǎn)廠家,工藝條件參差不齊,差距很大?,F(xiàn)代模具工業(yè)早已走出以前手工制模的時代,進入了數(shù)字化時代,實現(xiàn)了無圖化生產(chǎn),通過電腦輸入數(shù)據(jù)加工制作模具。我國不少廠家由于設備不配套很多工作依賴手工完成,嚴重影響了精度和質(zhì)量。
2、標準化水平不高:模具是專用成形工具產(chǎn)品,雖然個性化強,但也是工業(yè)產(chǎn)品,所以標準化工作十分重要。模具標準化工作主要包括模具技術標準的制訂和執(zhí)行、模具標準件的生產(chǎn)和應用以及有關標準的宣傳、貫徹和推廣等工作。中國模具標準化工作起步較晚,因此模具標準化落后于生產(chǎn),更落后于世界上許多工業(yè)發(fā)達的國家。由于中國模具標準化工作起步較晚,模具標準件生產(chǎn)、銷售、推廣和應用工作也比較落后,因此,模具標準件品種規(guī)格少、供應不及時、配套性差等問題長期存在,從而使模具標準件使用覆蓋率一直較低。
3、CAD/CAE/CAM 技術剛起步:CAD/CAE/CAM 是面向制造的工程設計技術群中的核心技術,是提高企業(yè)產(chǎn)品自主開發(fā)能力和產(chǎn)品檔次的重要手段,也是提高企業(yè)對市場的應變能力和快速響應能力的重要途徑,是現(xiàn)階段應大力推廣應用的關鍵共性技術,是模具設計的發(fā)展方向。
4、缺乏相關人才:當今世界正進行著新一輪的產(chǎn)業(yè)調(diào)整,一些模具制造逐漸向發(fā)展中國家轉(zhuǎn)移,中國正成為世界模具大國,但我國模具行業(yè)人才緊缺成為一個迫在眉睫的問題。模具行業(yè)是一個需長期積累經(jīng)驗的行業(yè),現(xiàn)在的年輕人能堅持下來而有所成就的很少。由于最初的學習非常枯燥,因此許多初學者常半途而廢。此外,我國傳統(tǒng)教育方式對模具人才的培養(yǎng)存在不足。一些高校盡管在近幾年內(nèi)設立了模具專業(yè),但由于受軟硬件設施限制,培養(yǎng)出的學員實際技能不夠。而社會上各種各樣的模具培訓班,由于缺乏規(guī)范的職業(yè)標準,因此學員質(zhì)量良莠不齊。
5、受到外資的挑戰(zhàn):目前世界制造業(yè)生產(chǎn)基地加速向中國轉(zhuǎn)移,中國制造業(yè)又正邁向更高的發(fā)展階段,對優(yōu)質(zhì)精密模具的需求不斷上升。國際模具工業(yè)巨頭繼20世紀90 年代中期進入中國后,再掀投資熱潮,目的正為搶占先機,中國本土模具工業(yè)面臨國外先進技術與高質(zhì)量制品的挑戰(zhàn),生存空間受擠壓。
6、缺乏自有品牌:企業(yè)開發(fā)能力弱、沒有品牌,導致了經(jīng)濟效益欠佳,在市場中常處于被動地位。[8]
六、參考文獻
[1]馬忠臣等.現(xiàn)代模具工業(yè)發(fā)展述評[J].模具技術,2006,03
[2]蔣桂芝.模具技術在國民經(jīng)濟中的地位[J].機電產(chǎn)品開發(fā)與創(chuàng)新,2009,05
[3]洪慎章.現(xiàn)代模具技術的現(xiàn)狀及發(fā)展趨勢[J].航空制造技術,2006,06
[4]吳存雷.淺談模具產(chǎn)業(yè)的發(fā)展[J].塑料工業(yè),2006,10
[5]曹延安.中國模具工業(yè)現(xiàn)狀[J].現(xiàn)代零部件,2009,03
[6]陳德忠.我國模具先進制造技術的發(fā)展[J].發(fā)展前沿,2000,09
[7]周永泰.中國模具工業(yè)的現(xiàn)狀與發(fā)展[J].行業(yè)展望,2007,12
[8]屈偉平.我國模具制造業(yè)發(fā)展現(xiàn)狀、存在的問題及對策[J].模具技術,2006,05
[9]周永泰.中國模具正在加速融入世界并實現(xiàn)國際共贏[J].模具工業(yè),2006,04
[10]曉霏等.中國模具工業(yè)發(fā)展現(xiàn)狀與展望[J].航空制造技術,2008,08
[11] A. Y. C. Nee and M. W. Fu, “Determination of optimal parting directions in plastic injection mold design”, Annals CIRP, 46(1),pp. 429–432, 1997.
9
開題報告
題 目: 拉鉤的冷沖模設計
一、課題意義
1、模具工業(yè)的分類
我國模具設計與制造技術的發(fā)展經(jīng)歷了手工作坊制造階段、工業(yè)化生產(chǎn)階段和現(xiàn)代化生產(chǎn)階段。伴隨著計算機技術的快速發(fā)展, 數(shù)字化、信息化CADCAE/CAM技術和數(shù)控加工機床已普遍采用, 模具產(chǎn)業(yè)正處于高速發(fā)展階段。
模具是制造業(yè)的重要基礎工藝裝備。模具總體上可分為兩大類: 金屬材料制件成形模具,如沖壓模具、鍛造模具、壓鑄模具、擠壓模具、拉絲模具、粉末冶金模具等; 非金屬材料制件成形模具, 如塑料注射模具、壓鑄模具、擠出模具, 橡膠制件、玻璃制件和陶瓷制件成形模具等。模具的具體分類方法很多, 如按模具結構形式分, 沖壓模具可分為簡單模、連續(xù)模和復合模, 注塑模具可分為單分型面和雙分型面注塑模具等; 按工藝性質(zhì)分, 沖壓模具可分為沖孔模、落料模、拉深模、彎曲模,塑模具可分為壓塑模、傳遞模、注射模等。其中沖壓模具、塑料模具、鑄造模具、鍛壓模具、橡膠模具、粉末冶金模具、拉絲模具、無機材料成形模具等是最主要的八大類, 用于制造業(yè)中的幾乎所有產(chǎn)品的生產(chǎn)。[7]
2、模具工業(yè)的地位
隨著社會的發(fā)展和科技的進步, 模具行業(yè)越來越被重視,模具技術在國民經(jīng)濟各個部門都得到廣泛的應用,它不僅與整個機械行業(yè)密切相關,而且與人們的生活密切相關。模具工業(yè)是國民經(jīng)濟的基礎產(chǎn)業(yè),模具工業(yè)的發(fā)展水平標志著一個國家的工業(yè)水平及產(chǎn)品開發(fā)的能力。模具是生產(chǎn)各種工業(yè)產(chǎn)品的重要基礎工藝裝備,國民經(jīng)濟的五大支柱產(chǎn)業(yè)—機械、電子、汽車、石化、建筑等都要求模具工業(yè)的發(fā)展與之相適應。
模具因其生產(chǎn)效率高、產(chǎn)品質(zhì)量好、材料消耗低、操作簡單、生產(chǎn)過程易于實現(xiàn)機械化與自動化、生產(chǎn)成本低而獲得廣泛應用,利用模具可以加工出薄壁、重量輕、剛性好、形狀復雜的零件;產(chǎn)品質(zhì)量有模具保證,具有一模一樣的的特點;這是其它加工制造業(yè)所無法完成的;模具是現(xiàn)代工業(yè),特別是汽車、摩托車、航空、儀表、儀器、醫(yī)療器械、電子通信、兵器、家用電器、五金工具、日用品等工業(yè)必不可少的工藝裝備。據(jù)資料統(tǒng)計,利用模具制造的零件數(shù)量,在飛機、汽車、摩托車、拖拉機、電機、電器、儀器儀表等機電產(chǎn)品中占80%以上;在電腦、電視機、攝像機、照相機、錄像機等電子產(chǎn)品中占85%以上;在電冰箱、洗衣機、空調(diào)、電風扇、自行車、手表等輕工業(yè)產(chǎn)品中占90%以上;在子彈、槍支等兵器產(chǎn)品中占95%以上;在日用金屬產(chǎn)品中占95%以上。可見,研究和發(fā)展模具技術,對于促進國民經(jīng)濟的發(fā)展具有特別重要的意義。目前,模具技術已成為衡量一個國家產(chǎn)品制造水平的重要標志之一。[2]
3、我國模具工業(yè)的現(xiàn)狀
近年來,我國模具工業(yè)的迅速發(fā)展是大家有目共睹的,中國模具工業(yè)的現(xiàn)狀大致可以從以下3個方面來講:
(1)模具的產(chǎn)值與出口量增長明顯。從整體情況來看,我國已經(jīng)步入模具工業(yè)大國之列,但是距模具強國還有相當差距。
(2)模具制造水平不斷提高。近幾年,以大型、精密、復雜、長壽命模具為代表的、技術含量較高的中高檔模具的比重進一步提高,現(xiàn)在中高檔模具所占比重已經(jīng)達到35% 以上。模具的設計和制造水平也有了很大的發(fā)展,很多先進的模具設計與制造技術在我國的模具企業(yè)中得到應用,如CAD/CAE/CAM 等計算機輔助技術、高速加工技術、熱流道技術、氣輔技術、逆向工程等新技術得到廣泛應用,E R P、P D M 等信息化管理技術正得到積極推廣,這些先進技術的應用和信息化管理的實施極大地提高了模具企業(yè)的生產(chǎn)效率,縮短了生產(chǎn)周期。
(3)我國模具行業(yè)已經(jīng)形成了自己的骨干隊伍。目前,我國約有模具生產(chǎn)廠點3 萬余家,從業(yè)人員100余萬人,在各個模具行業(yè)的骨干企業(yè)隊伍中也涌現(xiàn)出了本行業(yè)的龍頭企業(yè)。他們的生產(chǎn)裝備先進,生產(chǎn)達到了一定規(guī)模,技術水平較高,而且產(chǎn)品具有自己的特點。[10]
目前,中國約有模具生產(chǎn)廠2萬余家,從業(yè)人員50多萬人,全年模具產(chǎn)值達450億元人民幣以上。近年來,模具行業(yè)結構調(diào)整步伐加快,主要表現(xiàn)為大型、精密、復雜、長壽命模具和模具標準件發(fā)展速度高于行業(yè)的總體發(fā)展速度;塑料模和壓鑄模比例增大;面向市場的專業(yè)模具廠家數(shù)量及能力增加較快。隨著經(jīng)濟體制改革的不斷深入,“三資”及民營企業(yè)的發(fā)展很快。中國模具工業(yè)的發(fā)展在地域分布上存在不平衡性,東南沿海地區(qū)發(fā)展快于中西部地區(qū),南方的發(fā)展快于北方。模具生產(chǎn)最集中的地區(qū)在珠江三角和長江三角地區(qū),其模具產(chǎn)值約占全國產(chǎn)值的2/3以上。[5]
二、現(xiàn)代模具的發(fā)展前景
為了制造高精度、長壽命、高效的復雜腔結構的現(xiàn)代模具,需解決以下3個方面的問題:
1、模具材料及其表面處理技術。模具工業(yè)要上水平,材料應用是關鍵。因選材和用材不當,致使模具過早失效,大約占失效模具的45%以上。在模具材料方面常用的冷作模具鋼有CrWMn、Cr12、Cr12MoV 和W6Mo5Cr4V2,新型冷作模具鋼有65Nb、O12Al、CG-2、LD、GD、GM等;常用新型熱作模具鋼有美國H 1 3、瑞典QRO 80M、QRO 90SUPREME 等;常用塑料模具用鋼有預硬鋼(P20、SM1 B30)、時效硬化型鋼(P21、PMS、SM2、日本NAK55等)、熱處理硬化型鋼(MnCrWV、日本S-STAR、瑞典-勝百S-136 等)、粉末模具鋼(日本DEX40 等);多工位精度沖模硬質(zhì)合金(YG20、YG25 等)以及鋼結構硬質(zhì)合金( T L M W 5 0 、GW50 等)。在模具表面處理方面,主要趨勢是:由滲入單一元素向多元素共滲、復合滲(如TD 法)發(fā)展;由一般擴散向CVD 、P V D、P C V D、離入滲入、離子注入等方向發(fā)展;可采用的鍍膜有:TiC、TiN、TiCN、TiAN、CrN、Cr7C3、W2C 等,同時熱處理手段由大氣熱處理向真空熱處理發(fā)展。另外,激光強化、輝光離子氮化技術也日益受到重視。
2、提高設計制造技術水平。當代模具的設計與制造已廣泛采用計算機輔助設計與制造( C A D /CAM),設計過程程序化和自動化,使用程序模擬成形過程,采用交互式設計方法,發(fā)揮人和計算機的各自特長。數(shù)據(jù)庫和計算機網(wǎng)絡技術使設計人員擁有大量資料和信息。設計與制造之間的直接信息傳輸便于設計的反復修改。
3、專業(yè)化生產(chǎn)及標準化。專業(yè)化生產(chǎn)是現(xiàn)代化工業(yè)生產(chǎn)的重要特征之一,工業(yè)先進國家模具專業(yè)化生產(chǎn)已達到75% 以上。標準化是實現(xiàn)模具專業(yè)化生產(chǎn)的基本前提,也是系統(tǒng)提高整個模具行業(yè)技術水平和經(jīng)濟效益的重要手段,這是機械制造業(yè)向深層次發(fā)展的必由之路。國外企業(yè)都極為重視模具的標準化,我國的模具標準化程度不足30%,而且標準品種少、質(zhì)量低、交貨期長,嚴重阻礙了模具的合理流向和效能的發(fā)揮,需盡快制訂標準化規(guī)范Windows 用戶界面。[3]
目前, 國內(nèi)模具市場不斷擴大, 國際上將模具制造逐漸向我國轉(zhuǎn)移的趨勢和跨國集團到我國進行模具國際采購的趨向十分明顯。因此,展望未來, 國際、國內(nèi)模具市場總體發(fā)展前景美好。我國模具工業(yè)將會有一個繼續(xù)高速發(fā)展的機遇期。只要我們把握這個機遇期, 中國模具工業(yè)不但會在量和質(zhì)的方面繼續(xù)有一個很大的提高, 而且一定會在行業(yè)結構、產(chǎn)品水平、開發(fā)創(chuàng)新能力、企業(yè)的體制與機制的方方面面取得較大進展。
模具技術集合了機械、電子、化學、光學、材料、計算機、精密檢測和信息網(wǎng)絡等諸多學科, 是一個綜合性多學科的系統(tǒng)工程。模具技術的發(fā)展趨勢主要是模具產(chǎn)品向著更大型、更精密、更復雜及更經(jīng)濟快速的方向發(fā)展, 模具產(chǎn)品的技術含量不斷提高, 模具制造周期不斷縮短, 模具生產(chǎn)朝著信息化、無圖化、精細化、自動化的方向發(fā)展, 模具企業(yè)向著技術集成化、設備精良化、產(chǎn)品品牌化、管理信息化、經(jīng)營國際化的方向發(fā)展。[7]
三、課題研究方法與計劃
課題的主要內(nèi)容是沖壓模具的設計,所以我首先應該深入學習機械設計、機械CAD/CAM、冷沖壓技術等相關知識。沖壓模具是模具類別中應用最廣泛的一種,通過模具對金屬的直接加壓使其產(chǎn)生塑性變形,從而金屬材料分離,以此來獲得一定尺寸和性能的金屬零件。模具的設計過程是和實際生產(chǎn)分不開的。我們應該充分研究設計任務書,了解產(chǎn)品用途,并進行沖壓件的工藝性及尺寸公差等級分析,對于一些沖壓件結構不合理或工藝性不好的,必須征詢指導教師的意見后進行改進。在初步明確設計要求的基礎上,可按以下步驟進行沖壓總體方案的論證。
1、主要任務與目標
圖1為某電器元件—拉鉤。該零件的制造方法為冷沖壓成型,本課題要求分析封蓋沖壓件的成形工藝,設計模具,畫出模具裝配圖及所有零部件的工程圖,寫出畢業(yè)論文。
圖1 掛鉤
2、主要內(nèi)容與基本要求
(1)分析墊片的沖壓成形工藝。
(2)模具設計。此零件厚度小,形狀簡單,要求設計的模具具有高精度和高成型效率。
(3)打印圖紙,寫出畢業(yè)論文。
(4)要求學生熟悉冷沖模具設計工藝,具有較強的機械設計能力。設計圖紙的正確與否是評定本次設計水平的關鍵。
四、參考文獻
[1]劉國勝.黃石理工學院學報. Journal of Huangshi Institute of Technology,2007,01
[2]蔣桂芝.模具技術在國民經(jīng)濟中的地位[J].機電產(chǎn)品開發(fā)與創(chuàng)新,2009,05
[3]洪慎章.現(xiàn)代模具技術的現(xiàn)狀及發(fā)展趨勢[J].航空制造技術,2006,06
[4]袁崇磷.模具標準件的發(fā)展趨勢及需要解決的問題[J].模具制造,2006,06
[5]曹延安.中國模具工業(yè)現(xiàn)狀[J].現(xiàn)代零部件,2009,03
[6]洪慎章.現(xiàn)代模具技術的現(xiàn)狀及發(fā)展趨勢[J].航空制造技術, 2006,06
[7]周永泰.中國模具工業(yè)的現(xiàn)狀與發(fā)展[J].行業(yè)展望,2007,12
[8]機械工程師[J].Mechanical Engineer, 2006,11
[9]林承全.論沖壓模具設計制造與模具壽命的關系[J].模具制造,2008,06
[10] 1. K. S. Lee, J. Y. H, Fuh, Y. F. Zhang, A. Y. C. Nee and Z. Li,“IMOLD: an intelligent plastic injection mold design and assembly system”, Proceedings of the 4th International Conference On Die and Mould Technology, pp. 30–37, Malaysia, 4–6 June 1997.
[11] A. Y. C. Nee and M. W. Fu, “Determination of optimal parting directions in plastic injection mold design”, Annals CIRP, 46(1),pp. 429–432, 1997.
6
外文文獻翻譯譯文
題 目: 拉鉤的冷沖模設計
一、 外文原文
A Parametric-Controlled Cavity Layout Design System for a Plastic Injection Mould
M. L. H. Low and K. S. Lee
Department of Mechanical Engineering, National University of Singapore, Singapore
Today, the time-to-market for plastic products is becoming shorter, thus the lead time available for making the injection mould is decreasing. There is potential for timesaving in the mould design stage because a design process that is repeatable for every mould design can be standardised. This paper presents a methodology for designing the cavity layout for plastic injection moulds by controlling the geometrical parameters using a standardisation template. The standardization template for the cavity layout design consists of the configurations for the possible layouts. Each configuration of the layout design has its own layout design table of all the geometrical parameters. This standardisation template is pre-defined at the layout design level of the mould assembly design. This ensures that the required configuration can be loaded into the mould assembly design very quickly, without the need to redesign the layout. This makes it useful in technical discussions between the product designers and mould designers prior to the manufacture of the mould. Changes can be made to the 3D cavity layout design immediately during the discussions, thus saving time and avoiding miscommunication. This standardisation template for the cavity layout design can be customised easily for each mould making company to their own standards.
Keywords: Cavity layout design; Geometrical parameters;
Mould assembly; Plastic injection mould design; Standardisation
template
1. Introduction
Plastic injection moulding is a common method for the mass production of plastic parts with good tolerances. There are two main items that are required for plastic injection moulding. They are the injection-moulding machine and the injection mould. The injection-moulding machine has the mould mountedon it and provides the mechanism for molten plastic transfer from the machine to the mould, clamping the mould by the application of pressure and the ejection of the formed plastic part. The injection mould is a tool for transforming the molten plastic into the final shape and dimensional details of the plastic part. Today, as the time-to-market for plastic parts is becoming shorter, it is essential to produce the injection mould in a shorter time.
Much work had been done on applying computer technologies to injection mould design and the related field. Knowledge-based systems (KBS) such as IMOLD [1,2], IKMOULD[3], ESMOLD [4], the KBS of the National Cheng Kang University, Taiwan [5], the KBS of Drexel University [6], etc. were developed for injection mould design. Systems such as HyperQ/Plastic [7], CIMP [8], FIT [9], etc. are developed for the selection of plastic materials using a knowledge-based approach. Techniques have also been developed for parting design in injection moulding [10–12].
It has been observed that although mould-making industries are using 3D CAD software for mould design, much time is wasted in going through the same design processes for every project. There is great potential for timesaving at the mould design stage if the repeatable design processes can be standardized to avoid routine tasks. A well-organised hierarchical design tree in the mould assembly is also an important factor [13,14].However, little work has been done in controlling the parameters in the cavity layout design; thus this area will be our main focus. Although there are many ways of designing the cavity layout [15,16], mould designers tend to use only conventional designs, thus there is a need to apply standardisation at the cavity layout design level.
This paper presents a methodology for designing the cavity layout for plastic injection moulds by controlling the parameters based on a standardisation template. First, a well-organised mould assembly hierarchy design tree had to be established. Then, the classification of the cavity layout configuration had to be made to differentiate between those with standard configurations and those with non-standard configurations. The standard configurations will be listed in a configuration database and each configuration has its own layout design table that controls its own geometrical parameters. This standardization template is pre-defined at the layout design level of the mould assembly design.
2. Cavity Layout Design for a Plastic Injection Mould
An injection mould is a tool for transforming molten plastic into the final shape and dimensional details of a plastic part. Thus, a mould contains an inverse impression of the final part. Most of the moulds are built up of two halves: the front insert and the back insert. In certain mould-making industries, the front insert is also known as the cavity and the back insert is known as the core. Figure 1 shows a front insert (cavity) and a back insert (core). Molten plastic is injected into the impression to fill it. Solidification of the molten plastic then forms the part. Figure 2 shows a simple two-plate mould assembly.
2.1 Difference Between a Single-Cavity and a Multi-Cavity Mould
Very often, the impression in which molten plastic is being filled is also called the cavity. The arrangement of the cavities is called the cavity layout. When a mould contains more than one cavity, it is referred to as a multi-cavity mould. Figures 3(a) and 3(b) shows a single-cavity mould and a multi-cavity mould.
A single-cavity mould is normally designed for fairly large parts such as plotter covers and television housings. For smaller parts such as hand phone covers and gears, it is always more economical to design a multi-cavity mould so that more parts can be produced per moulding cycle. Customers usually determine the number of cavities, as they have to balance the investment in the tooling against the part cost.
2.2 Multi-Cavity Layout
A multi-cavity mould that produces different products at the same time is known as a family mould. However, it is not usual to design a mould with different cavities, as the cavities may not all be filled at the same time with molten plastic of the same temperature.
On the other hand, a multi-cavity mould that produces the same product throughout the moulding cycle can have a balanced layout or an unbalanced layout. A balanced layout is one in which the cavities are all uniformly filled at the same time under the same melt conditions [15,16]. Short moulding can occur if an unbalanced layout is being used, but this can be overcome by modifying the length and cross-section of the runners (passageways for the molten plastic flow from the sprue to the cavity). Since this is not an efficient method, it is avoided where possible. Figure 4 shows a short moulding situation due to an unbalanced layout.
A balanced layout can be further classified into two categories: linear and circular. A balanced linear layout can accommodate 2, 4, 8, 16, 32 etc. cavities, i.e. it follows a 2n series. A balanced circular layout can have 3, 4, 5, 6 or more cavities, but there is a limit to the number of cavities that can be accommodated in a balanced circular layout because of space constraints. Figure 5 shows the multi-cavity layouts that have been discussed.
3. The Design Approach
This section presents an overview of the design approach for the development of a parametric-controlled cavity layout design system for plastic injection moulds. An effective working method of mould design involves organising the various subassemblies and components into the most appropriate hierarchy design tree. Figure 6 shows the mould assembly hierarchy design tree for the first level subassembly and components. Other subassemblies and components are assembled from the second level onwards to the nth level of the mould assembly hierarchy design tree. For this system, the focus will be made only on the “cavity layout design”.
3.1 Standardisation Procedure
In order to save time in the mould design process, it is necessary to identify the features of the design that are commonly used. The design processes that are repeatable for every mould design can then be standardised. It can be seen from Fig. 7 that there are two sections that interplay in the standardization procedure for the “cavity layout design”: component assembly standardisation and cavity layout configuration standardisation.
3.1.1 Component Assembly Standardisation
Before the cavity layout configuration can be standardised, there is a need to recognise the components and subassemblies that are repeated throughout the various cavities in the cavity layout. Figure 8 shows a detailed “cavity layout design” hierarchy design tree. The main insert subassembly (cavity) in thesecond level of the hierarchy design tree has a number of subassemblies and components that are assembled directly to it from the third level onwards of the hierarchy design tree. They can be viewed as primary components and secondary components. Primary components are present in every mould design. The secondary components are dependent on the plastic part that is to be produced, so they may or may not be present
in the mould designs.
As a result, putting these components and subassemblies directly under the main insert subassembly, ensures that every repeatable main insert (cavity) will inherit the same subassemblies and components from the third level onwards of the hierarchy design tree. Thus, there is no need to redesign similar subassemblies and components for every cavity in the cavity layout.
3.1.2 Cavity Layout Configuration Standardisation
It is necessary to study and classify the cavity layout configurations into those that are standard and those that are nonstandard. Figure 9 shows the standardisation procedure of the cavity layout configuration.
A cavity layout design, can be undertaken either as a multicavity layout or a single-cavity layout, but the customers always determine this decision. A single-cavity layout is always considered as having a standard configuration. A multi-cavity mould can produce different products at the same time or the same products at the same time. A mould that produces different products at the same time is known as a family mould, which is a non-conventional design. Thus, a multicavity family mould has a non-standard configuration.
A multi-cavity mould that produces the same product can contain either a balanced layout design or an unbalanced layout design. An unbalanced layout design is seldom used and, as a result, it is considered to possess a non-standard configuration. However, a balanced layout design can also encompass either a linear layout design or a circular layout design. This depends on the number of cavities that are required by the customers. It must be noted, however, that a layout design that has any other non-standard number of cavities is also classified as having a non-standard configuration.
After classifying those layout designs that are standard, their detailed information can then be listed into a standardization template. This standardisation template is pre-defined in the cavity layout design level of the mould assembly design and supports all the standard configurations. This ensures that the required configuration can be loaded very quickly into the mould assembly design without the need to redesign the layout.
3.2 Standardisation Template
It can be seen from Fig. 10 that there are two parts in the standardisation template: a configuration database and a layoutde sign table. The configuration database consists of all the standard layout configurations, and each layout configuration has its own layout design table that carries the geometrical parameters. As mould-making industries have their own standards, the configuration database can be customised to take into account those designs that are previously considered as non-standard.
3.2.1 Configuration Database
A database can be used to contain the list of all the different standard configurations. The total number of configurations in this database corresponds to the number of layout configurations available in the cavity layout design level of the mould design assembly. The information listed in the database is the configuration number, type, and the number of cavities. Table 1 shows an example of a configuration database. The configuration number is the name of each of the available layout configurations with the corresponding type and number of cavities. When a particular type of layout and number of cavities is called for, the appropriate layout configuration will be loaded into the cavity layout design.
3.2.2 Layout Design Table
Each standard configuration listed in the configuration database has its own layout design table. The layout design table contains the geometrical parameters of the layout configuration and is independent for every configuration. A more complex layout configuration will have more geometrical parameters to control the cavity layout.
Figures 11(a) and 11(b) show the back mould plate (core plate) with a big pocket and four small pockets for assembling the same four-cavity layout. It is always more economical and easier to machine a large pocket than to machine individual smaller pockets in a block of steel. The advantages of machining a large pocket are:
1. More space between the cavities can be saved, thus a smaller block of steel can be used.
2. Machining time is faster for creating one large pocket compared to machining multiple small pockets.
3. Higher accuracy can be achieved for a large pocket than for multiple smaller pockets.
As a result, the default values of the geometrical parameters in the layout design table results in there being no gap between the cavities. However, to make the system more flexible, the default values of the geometrical parameters can be modified to suit each mould design where necessary.
3.3 Geometrical Parameters
There are three variables that establish the geometrical parameters:
1. Distances between the cavities (flexible). The distances between the cavities are listed in the layout design table and they can be controlled or modified by the user. The default values of the distances are such that there are no gaps between the cavities.
2. Angle of orientation of the individual cavity (flexible). The angle of orientation of the individual cavity is also listed in the layout design table which the user can change. For a multi-cavity layout, all the cavities have to be at the same angle of orientation as indicated in the layout design table. If the angle of orientation is modified, all the cavities will be rotated by the same angle of orientation without affecting the layout configuration.
3. Assembly mating relationship between each cavities (fixed). The orientation of the cavities with respect to each other is pre-defined for each individual layout configuration and is controlled by the assembly mating relationship between cavities. This is fixed for every layout configuration unless it is customised.
Figure 12 shows an example of a single-cavity layout configuration and its geometrical parameters. The origin of the main insert/cavity is at the centre. The default values of X1 and Y1 are zero so that the cavity is at the centre of the layout (both origins overlap each other). The user can change the values of X1 and Y1, so that the cavity can be offset appropriately.
Figure 13 shows an example of an eight-cavity layout configuration and its geometrical parameters. The values of X and Y are the dimensions of the main insert/cavity. By default, the values of X1 and X2 are equal to X, the value of Y1 is equal to Y, and thus there is no gap between the cavities. The values of X1, X2, and Y1 can be increased to take into account the gaps between the cavities in the design. These values are listed in the layout design table.
If one of the cavities has to be oriented by 90°, the rest of the cavities will be rotated by the same angle, but the layout design remains the same. The user is able to rotate the cavities by changing the parameter in the layout design table. The resultant layout is shown in Fig. 14.
A complex cavity layout configuration, which has more geometrical parameters, must make use of equation to relate the parameters.
4. System Implementation
A prototype of the parametric-controlled cavity layout design system for a plastic injection mould has been implemented using a Pentium III PC-compatible as the hardware. This prototype system uses a commercial CAD system (SolidWorks 2001) and a commercial database system (Microsoft Excel?) as the software. The prototype system is developed using the Microsoft Visual C++ V6.0 programming language and the SolidWorks API (Application Programming Interface) in a Windows NT? environment. SolidWorks is chosen primarily for two reasons:
1. The increasing trend in the CAD/CAM industry is to move towards the use of Windows-based PCs instead of UNIX workstations mainly because of the cost involved in purchasing the hardware.
2. The 3D CAD software is fully Windows-compatible, thus it is capable of integrating information from Microsoft Excel files into the CAD files (part, assembly, and drawing) smoothly [17].
This prototype system has a configuration database of eight standard layout configurations that are listed in an Excel file. This is shown in Fig. 15(a). Corresponding to this configuration database, the layout design level, which is an assembly file in SolidWorks (layout.sldasm), has the same set of layout configurations. The configuration name in the Excel file corresponds to the name of the configurations in the layout assembly file, which is shown in Fig. 15(b).
Every cavity layout assembly file (layout.sldasm) for each project will be pre-loaded with these layout configurations. When a required layout configuration is requested via the user interface, the layout configuration will be loaded. The user interface shown in Fig. 16 is prior to the loading of the requested layout configuration. Upon loading the requested layout configuration, the current layout configuration information will be listed in the list box.
The user is then able to change the current layout configuration to any other available layout configurations that are found in the configuration database. This is illustrated in Fig. 17.
The layout design table for the current layout configuration that contains the geometrical parameters can be activated when the user triggers the push button at the bottom of the user interface. When the values of the geometrical parameters are changed, the cavity layout design will be updated accordingly. Figure 18 shows the activation of the layout design table of the current layout configuration.
5. A Case Study
A CAD model of a hand phone cover, shown in Fig. 19, is used in the following case study.
Prior to the cavity layout design stage, the original CAD model has to be scaled according to the shrinkage value of the moulding resin to be used. The main insert is then created to encapsulate the shrunk part. This entire subassembly is known as the main insert subassembly (xxx cavity. sldasm), where “xxx” is the project name. Figure 20 shows the main insert subassembly. After the main insert subassembly is created, the cavity layout design system can be used to prepare the cavity layout of the mould assembly.
5.1 Scenario 1: Initial Cavity Layout Design
In a mould design, the number of cavities to be built in a mould is always suggested by the customers, as they have to balance the investment in the tooling against the part cost. Initially, the customers had requested a two-cavity mould to be designed for this hand phone cover. After the creation of the main insert subassembly, the mould designer loads a layout configu
收藏