購買設(shè)計(jì)請充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
湖 南 科 技 大 學(xué)
畢業(yè)設(shè)計(jì)(論文)任務(wù)書
機(jī)電工程學(xué) 院 機(jī)械設(shè)計(jì)制造及其自動化 系(教研室)
系(教研室)主任: (簽名) 2015 年 1 月 30 日
學(xué)生姓名: 易兆祥 學(xué)號: 1103010105 專業(yè): 機(jī)械設(shè)計(jì)制造及其自動化
1 設(shè)計(jì)(論文)題目及專題:數(shù)控激光切割機(jī)床總體和垂直進(jìn)給系統(tǒng)設(shè)計(jì)
2 學(xué)生設(shè)計(jì)(論文)時間:自 2015年 1月30 日開始至 2015 年5月 25 日止
3 設(shè)計(jì)(論文)所用資源和參考資料:
①上一學(xué)期所搜集的相關(guān)文獻(xiàn)資料;
②相關(guān)教材及機(jī)械設(shè)計(jì)、工藝手冊;
③要求熟練使用AutoCAD、PRO/E繪圖軟件。
4 設(shè)計(jì)(論文)應(yīng)完成的主要內(nèi)容:
① 分析數(shù)控激光切割機(jī)床的整體傳動方案;②垂直進(jìn)給系統(tǒng)結(jié)構(gòu)的總體方案設(shè)計(jì);③零部件的校核與設(shè)計(jì)相關(guān)的計(jì)算 ;④裝配圖的設(shè)計(jì)、零件工作圖的設(shè)計(jì);⑤本設(shè)計(jì)的優(yōu)缺點(diǎn)分析 ;⑥編寫設(shè)計(jì)說明書;
5 提交設(shè)計(jì)(論文)形式(設(shè)計(jì)說明與圖紙或論文等)及要求:
①零件圖、裝配圖(Pro/E或AutoCAD完成),折合0號圖2.5張;
②編寫的設(shè)計(jì)說明書不少于40頁 ;
③課題相關(guān)論文的翻譯(英譯中,不少于2000字)一篇;
6 發(fā)題時間: 2015 年 1 月 30 日
指導(dǎo)教師: (簽名)
學(xué) 生: (簽名)
湖 南 科 技 大 學(xué)
開題報(bào)告
學(xué) 生 姓 名: 易兆祥
學(xué) 院: 機(jī)電工程學(xué)院
專業(yè)及班級: 機(jī)械設(shè)計(jì)制造及其自動化一班
學(xué) 號: 1103010105
指 導(dǎo) 教 師:萬林林
2015年03月15日
湖南科技大學(xué)2015屆畢業(yè)設(shè)計(jì)(論文)開題報(bào)告
題 目
數(shù)控激光切割機(jī)床總體和垂直進(jìn)給系統(tǒng)設(shè)計(jì)
作者姓名
易兆祥
學(xué)號
1103010105
所學(xué)專業(yè)
機(jī)械設(shè)計(jì)制造及其自動化
1、 研究的意義,同類研究工作國內(nèi)外現(xiàn)狀、存在問題(列出主要參考文獻(xiàn))
Ⅰ、研究的意義:
激光切割機(jī)是光、機(jī)、電一體化高度集成設(shè)備,科技含量高,與傳統(tǒng)機(jī)加工相比,激光切割機(jī)的加工精度更高、柔性化好,有利于提高材料的利用率,降低產(chǎn)品成本,減輕工人負(fù)擔(dān),對制造業(yè)來說,可以說是一場技術(shù)革命。激光切割加工是用不可見的光束代替了傳統(tǒng)的機(jī)械刀,具有精度高,切割快速,不局限于切割圖案限制,自動排版節(jié)省材料,切口平滑,加工成本低等特點(diǎn),將逐漸改進(jìn)或取代于傳統(tǒng)的金屬切割工藝設(shè)備。激光刀頭的機(jī)械部分與工件無接觸,在工作中不會對工件表面造成劃傷;激光切割速度快,切口光滑平整,一般無需后續(xù)加工;切割熱影響區(qū)小,板材變形小,切縫窄(0.1mm~0.3mm);切口沒有機(jī)械應(yīng)力,無剪切毛刺;加工精度高,重復(fù)性好,不損傷材料表面;數(shù)控編程,可加工任意的平面圖,可以對幅面很大的整板切割,無需開模具,經(jīng)濟(jì)省時。
參考文獻(xiàn):[1] 張學(xué)仁.數(shù)控電火花線切割加工技術(shù). 哈爾濱:哈爾濱工業(yè)出版社,2000
Ⅱ、國內(nèi)外現(xiàn)狀:
激光被譽(yù)為二十世紀(jì)最重大的科學(xué)發(fā)現(xiàn)之一,它剛一問世就引起了材料科學(xué)家的高度重視。1971年11月,美國通用汽車公司率先使用一臺250W CO2激光器進(jìn)行利用激光輻射提高材料耐磨性能的試驗(yàn)研究,并于1974年成功地完成了汽車轉(zhuǎn)向器殼內(nèi)表面(可鍛鑄鐵材質(zhì))激光淬火工藝研究,淬硬部位的耐磨性能比未處理之前提高了10倍。這是激光表面改性技術(shù)的首次工業(yè)應(yīng)用。多年以來,世界各國投入了大量資金和人力進(jìn)行激光器、激光加工設(shè)備和激光加工對材料學(xué)的研究,促使激光加工得到了飛速發(fā)展,并獲得了巨大的經(jīng)濟(jì)效益和社會效益。如今在中國,激光技術(shù)已在工業(yè)、農(nóng)業(yè)、醫(yī)學(xué)、軍工以及人們的現(xiàn)代生活中得到廣泛的應(yīng)用,并且正逐步實(shí)現(xiàn)激光技術(shù)產(chǎn)業(yè)化,國家也將其列為“九五”攻關(guān)重點(diǎn)項(xiàng)目之一?!笆濉钡闹饕ぷ魇谴龠M(jìn)激光加工產(chǎn)業(yè)的發(fā)展,保持激光器年產(chǎn)值20%的平均增長率,實(shí)現(xiàn)年產(chǎn)值200億元以上;在工業(yè)生產(chǎn)應(yīng)用中普及和推廣加工技術(shù),重點(diǎn)完成電子、汽車、鋼鐵、石油、造船、航空等傳統(tǒng)工業(yè)應(yīng)用激光技術(shù)進(jìn)行改造的示范工程;為信息、材料、生物、能源、空間、海洋等六大高科技領(lǐng)域提供嶄新的激光設(shè)備和儀器。
Ⅲ、存在問題:
近年來,我國從日、德、美、西班牙等國家先后引進(jìn)數(shù)控機(jī)床先進(jìn)技術(shù)和合作、合資生產(chǎn),解決了機(jī)床的可靠性、穩(wěn)定性問題,數(shù)控機(jī)床開始正式生產(chǎn)和使用,并逐步向前發(fā)展。
激光切割的適用對象主要是難切割材料,如高強(qiáng)度、高韌性材料以及精密細(xì)小和形狀復(fù)雜的零件,因而數(shù)控激光切割在我國制造業(yè)中正發(fā)揮出巨大的優(yōu)越性。
任何東西都有兩面性,有了優(yōu)點(diǎn)也會有缺點(diǎn)。不是所有的材質(zhì)都可以使用激光切割加工的,不同的激光機(jī)切割不同的材質(zhì),不得不承認(rèn)不夠線切割好,因?yàn)榫€切割可以對任何的材質(zhì)進(jìn)行切割。主要問題還有研發(fā)投入少,市場無序競爭,創(chuàng)新意識不足,企業(yè)之間合作太少。
2、研究目標(biāo)、內(nèi)容和擬解決的關(guān)鍵問題(根據(jù)任務(wù)要求進(jìn)一步具體化)
Ⅰ、研究目標(biāo):數(shù)控激光切割機(jī)床總體和垂直進(jìn)給系統(tǒng)設(shè)計(jì)
Ⅱ、研究內(nèi)容:
(1)分析數(shù)控激光切割機(jī)床的整體傳動方案;(2)垂直進(jìn)給系統(tǒng)結(jié)構(gòu)的總體方案設(shè)計(jì);(3)零部件的校核與設(shè)計(jì)相關(guān)的計(jì)算 ;(4)裝配圖的設(shè)計(jì)、零件工作圖的設(shè)計(jì);(5)本設(shè)計(jì)的優(yōu)缺點(diǎn)分析 ;(6)編寫設(shè)計(jì)說明書.
Ⅲ、擬解決的關(guān)鍵問題:
(1) 激光切割頭;
(2) 橫向縱向進(jìn)給系統(tǒng);
(3) 垂直進(jìn)給系統(tǒng);
其中,橫向縱向及垂直進(jìn)給系統(tǒng)全部由伺服電機(jī)來驅(qū)動。
2、 特色與創(chuàng)新之處
本品在導(dǎo)軌上使用直線滾動導(dǎo)軌,相對于普通機(jī)床所用導(dǎo)軌,直線滾動導(dǎo)軌定位精度高,降低機(jī)床造價(jià)并節(jié)約電力,還可以長期維持機(jī)床的高精度。在激光刀頭方面,普通數(shù)控激光切割機(jī)Z軸拖動重量在5kg以上時,應(yīng)采用重力平衡設(shè)施,而高性能數(shù)控激光切割機(jī)的Z軸拖動重量在2kg以上就必須施加重力平衡設(shè)施,
本品采用氣缸拖動方式該方式重量輕、體積小、易安裝,還可根據(jù)要求調(diào)整氣缸的平衡力。
3、 擬采取的研究方法、步驟、技術(shù)路線
設(shè)計(jì)本產(chǎn)品應(yīng)該先實(shí)地考察現(xiàn)有的數(shù)控激光切割機(jī)床,并觀察其工作特點(diǎn),比較不激光切割機(jī)床以及其他切割機(jī)比如線切割,水切割之間的差異,得出現(xiàn)有的激光切割機(jī)床的優(yōu)點(diǎn)和劣勢。然后取長補(bǔ)短,提出整體方案。再把方案給指導(dǎo)老師批閱,聽取老師的建議,改正不合理的地方,一步步完善方案,最后進(jìn)過細(xì)致的設(shè)計(jì),分析,計(jì)算以得到最終的方案。
技術(shù)路線:一,總體方案分析二,機(jī)械部分XY工作臺和Z軸機(jī)構(gòu)設(shè)計(jì) 三,滾珠絲杠傳動系統(tǒng)設(shè)計(jì) 四,導(dǎo)軌選擇 五,步進(jìn)電機(jī)及傳動系統(tǒng)設(shè)計(jì) 六,剛度分析 七,消除齒側(cè)間隙和預(yù)緊 八,數(shù)控系統(tǒng)的設(shè)計(jì)
4、 擬使用的主要設(shè)計(jì)、分析軟件及儀器設(shè)備
Auto-CAD計(jì)算機(jī)輔助繪圖軟件
6、參考文獻(xiàn)
[1] 張學(xué)仁.數(shù)控電火花線切割加工技術(shù). 哈爾濱:哈爾濱工業(yè)出版社2000
[2] 李廣弟.單片機(jī)基礎(chǔ).北京:北京航空航天大學(xué)出版社出版,2002
[3] 鄭玉華.典型機(jī)械(電)產(chǎn)品構(gòu)造. 北京:北京科學(xué)出版社,2006
[4] 陳嬋娟.數(shù)控機(jī)床設(shè)計(jì). 北京:化學(xué)工業(yè)出版社,2006
[5] 李秉操.單片機(jī)原理及其在工業(yè)控制中的應(yīng)用. 陜西:陜西電子編輯部1991
注:
1、開題報(bào)告是本科生畢業(yè)設(shè)計(jì)(論文)的一個重要組成部分。學(xué)生應(yīng)根據(jù)畢業(yè)設(shè)計(jì)(論文)任務(wù)書的要求和文獻(xiàn)調(diào)研結(jié)果,在開始撰寫論文之前寫出開題報(bào)告。
2、參考文獻(xiàn)按下列格式(A為期刊,B為專著)
A:[序號]、作者(外文姓前名后,名縮寫,不加縮寫點(diǎn),3人以上作者只寫前3人,后用“等”代替。)、題名、期刊名(外文可縮寫,不加縮寫點(diǎn))年份、卷號(期號):起止頁碼。
B:[序號]、作者、書名、版次、(初版不寫)、出版地、出版單位、出版時間、頁碼。
3、表中各項(xiàng)可加附頁。
湖南科技大學(xué)本科生畢業(yè)設(shè)計(jì)(論文)
摘 要
激光切割的適用對象主要是難切割材料,如高強(qiáng)度、高韌性材料以及精密細(xì)小和形狀復(fù)雜的零件,因而數(shù)控激光切割在我國制造業(yè)中正發(fā)揮出巨大的優(yōu)性。
本文設(shè)計(jì)了一臺單片機(jī)控制的數(shù)控激光切割機(jī)床,主要完成了:機(jī)床整體結(jié)構(gòu)設(shè)計(jì),Z軸、XY軸的結(jié)構(gòu)設(shè)計(jì)計(jì)算、滾珠絲杠、直線滾動導(dǎo)軌的選擇及其強(qiáng)度分析;以步進(jìn)電機(jī)為進(jìn)給驅(qū)動的驅(qū)動系統(tǒng)及其傳動機(jī)構(gòu)的分析設(shè)計(jì)計(jì)算。
關(guān)鍵詞:CNC;激光切割機(jī)床;結(jié)構(gòu);設(shè)計(jì)
ABSTRACT
Laser cutting machine tool was usually used for the hard-cutting material, such as high-strength material, high precision ductile materials, and smart and complicated components. So, CNC laser cutting has been playing an important role in China's manufacturing industry.
This paper describes the design of a SCM-controlled CNC laser cutting machine tools. More attention was paid on the overall machine design, Z axis, XY axis in the design, ball-screw and the choice of linear motion guide and intensity analysis; the drive system into which stepper motor was put and the analysis of the drive system design.
KeyWords:CNC;laser cutting machine tools;architectured;esign
目 錄
第1章 緒論………………………………………………………………………1
1.1 課題背景…………………………………………………………………1
1.2 本課題主要研究內(nèi)容……………………………………………………1
1.3 國內(nèi)外研究現(xiàn)狀…………………………………………………………2
第2章 總體方案的擬定………………………………………………………3
2.1設(shè)計(jì)任務(wù)……………………………………………………………………3
2.2總體方案的選擇和擬定……………………………………………………3
第3章 激光切割系統(tǒng)的設(shè)計(jì)………………………………………………5
3.1 激光器……………………………………………………………………5
3.1.1激光器的組成………………………………………………………5
3.1.2激光切的分類………………………………………………………5
3.2 激光切割設(shè)備……………………………………………………………6
3.2.1激光切割設(shè)備的組成………………………………………………6
3.2.2激光切割用的激光器……………………………………………8
3.2.3激光切割用割炬…………………………………………………9
3.3激光切割頭設(shè)計(jì)…………………………………………………………10
第4章 傳動系統(tǒng)設(shè)計(jì)………………………………………………………12
4.1 XY工作臺設(shè)計(jì)…………………………………………………………12
4.1.1主要設(shè)計(jì)參數(shù)及依據(jù)…………………………………………12
4.1.2XY進(jìn)給系統(tǒng)手里分析……………………………………………12
4.1.3初步確定工作臺尺寸及估算質(zhì)量………………………………12
4.2 Z軸隨動系統(tǒng)設(shè)計(jì)………………………………………………………13
4.3 滾珠絲趕副設(shè)計(jì)計(jì)算………………………………………………… 14
4.3.1滾珠絲桿的特點(diǎn)…………………………………………………14
4.3.2主要參數(shù)…………………………………………………………14
4.3.3導(dǎo)程計(jì)算…………………………………………………………15
4.3.4確定當(dāng)量轉(zhuǎn)速與當(dāng)量載荷………………………………………16
4.3.5初選滾珠絲桿副…………………………………………………17
4.3.6確定允許的最小螺紋底徑………………………………………17
4.3.7確定滾珠絲桿副的規(guī)格代號……………………………………18
4.3.8確定絲桿副的預(yù)緊力…………………………………………18
4.3.9行程補(bǔ)償值與拉伸力…………………………………………18
4.3.10確定滾珠絲桿副支承用的軸承代號,規(guī)格…………………19
4.3.11滾珠絲桿副工作圖設(shè)計(jì)………………………………………20
4.3.12傳動系統(tǒng)剛度…………………………………………………20
4.3.13剛度驗(yàn)算和精度選擇…………………………………………21
4.3.14驗(yàn)算臨界壓縮載荷……………………………………………22
4.3.15驗(yàn)算臨界轉(zhuǎn)速……………………………………………………23
4.3.16效率驗(yàn)算………………………………………………………23
第5章 導(dǎo)軌的選定…………………………………………………………25
5.1 主要要求及種類…………………………………………………………25
5.1.1對導(dǎo)軌的基本要求………………………………………………25
5.1.2導(dǎo)軌的技術(shù)要求…………………………………………………25
5.1.3分類及特點(diǎn)………………………………………………………25
5.2 導(dǎo)軌的選用………………………………………………………………26
第6章 步進(jìn)電機(jī)及其傳動機(jī)構(gòu)的確定…………………………………28
6.1 步進(jìn)電機(jī)的選用………………………………………………………28
6.1.1脈沖當(dāng)量和步距角………………………………………………28
6.1.2步進(jìn)電機(jī)上起動力矩的近似計(jì)算………………………………28
6.1.3確定步進(jìn)電機(jī)最高工作頻率……………………………………29
6.2 齒輪傳動機(jī)構(gòu)的確定…………………………………………………29
6.2.1傳動比的確定……………………………………………………29
6.2.2齒輪結(jié)構(gòu)主要參數(shù)的確定………………………………………30
6.3 步進(jìn)電機(jī)慣性負(fù)載的計(jì)算……………………………………………30
第7章 傳動系統(tǒng)剛度分析…………………………………………………33
7.1 根據(jù)工作臺不出現(xiàn)爬行的條件來確定傳動系統(tǒng)剛度………………33
7.2 根據(jù)微量進(jìn)給的靈敏度來確定傳動系統(tǒng)的剛度……………………33
第8章 消隙方法與預(yù)緊……………………………………………………35
8.1 消隙方法………………………………………………………………35
8.1.1偏心軸套調(diào)整法…………………………………………………35
8.1.2錐度齒輪調(diào)整法…………………………………………………35
8.1.3雙片齒輪錯齒調(diào)整法……………………………………………36
8.2 預(yù)緊……………………………………………………………………37
第9章 結(jié)論……………………………………………………………………38
參考文獻(xiàn)…………………………………………………………………………39
致謝…………………………………………………………………………………40
v
VSS motion control for a laser-cutting machine
Abstract
An advanced position-tracking control algorithm has been developed and applied to a CNC motion controller in a laser-cutting machine. The drive trains of the laser-cutting machine are composed of belt-drives. The elastic servomechanism can be described by a two-mass system interconnected by a spring. Owing to the presence of elasticity, friction and disturbances, the closed-loop performance using a conventional control approach is limited. Therefore, the motion control algorithm is derived using the variable system structure control theory. It is shown that the proposed control e!ectively suppresses the mechanical vibrations and ensures compensation of the system uncertainties. Thus, accurate position tracking is guaranteed.
1. Introduction
For many industrial drives, the performance of motion control is of particular importance. Rapid dynamic behaviour and accurate position trajectory tracking are of the highest interest. Applications such as machine tools have to satisfy these high demands. Rapid movement with high accuracy at high speed is demanded for laser cutting machines too. This paper describes motion control algorithm for a low-cost laser-cutting machine that has been built on the base of a planar Cartesian table with two degrees-of-freedom (Fig. 1). The drive trains of the laser-cutting machine are composed of belt-drives with a timing belt. The use of timing belts in the drive system is attractive because of their high speed, high efficiency, long travel lengths and low-cost (Haus, 1996). On the other hand, they yield more uncertain dynamics and a higher transmission error ( Kagotani, Koyama & Ueda, 1993). Consequently, belt-drives suffer from lower repeatability and accuracy. Moreover, the belt-drive dynamics include more resonance frequencies, which are a destabilising factor in a feedback control (Moon, 1997). Therefore, a conventional control approach like PI, PD or PID control fails to achieve acceptable performance. Plant parameter variations, uncertain dynamics and load torque disturbances, as well as mechanical vibrations, are factors that have to be addressed to guarantee robust system stability and the high performance of the system. An advanced robust motion control scheme is introduced in this paper, which deals with the issues related to motion control of the drives with timing belts. The control scheme is developed on the basis of the motion control algorithm introduced by Jezernik, Curk and Harnik (1994). It possesses robust properties against the disturbances that are associated with a nominal plant model, as it has been developed with the use of the variable structure system (VSS) theory (Utkin, 1992). The crucial part of the control scheme is the asymptotic disturbance estimator. However, as shown in this paper, it fails to stabilise resonant belt dynamics, since it was developed for a rigid robot mechanism. Therefore, this paper introduces an improved motion control scheme, which suppresses the vibrations that would arise due to the non-rigid, elastic drive. Consequently, a rapid response with low position tracking error is guaranteed.
The paper is set out as follows. The laser-cutting machine is presented and the control plant model of the machine drives is developed in Section 2. In Section 3, the VSS control regarding the elastic servomechanism is discussed and the derivation of the motion control scheme is described. Section 4 presents the experimental results and a follow-up discussion. The paper is summarized and concluded in Section 5.
2. The control plant
2.1. The machine description
The laser-cutting machine consists of the XY horizontal table and a laser system (Fig. 1). The fundamental components of the laser system are:
● the power supply unit, which is placed off the table and thus is not considered in the motion control design;
● the laser-beam source, which generates the laser beam (the laser-generator);
●the laser-head, which directs the laser beam onto the desired position in the cutting plane.
The table has to move and position the laser head in a horizontal plane. This is achieved by the means of a drive system with two independent motion axes. They provide movement along the Cartesians' XY axes of 2 and 1m, respectively. The X-drive provides the motion of the laser-head in X-direction. The drive and the laser-head as well as the laser-generator are placed on the bridge to ensure a high-quality optical path for the laser-beam. The movement of the bridge along the Y-axis is provided by the Y-drive. The laser-head represents the X-drive load, while the Y-drive is loaded by the bridge, which carries the complete X-drive system, the laser-head, and the laser-generator. The loads slide over the frictionless slide surface.
The positioning system consists of the motion controller, the amplifiers, the DC-motors and the drive trains. The X-drive train is composed of a gearbox and a belt-drive (Fig. 2). The gearbox reduces the motor speed, while the belt-drive converts rotary motion into linear motion. The belt-drive consists of a timing belt and of two pulleys: a driving pulley and a driven pulley that stretch the belt. The Y-drive train is more complex. The heavy bridge is driven by two parallel belt-drives; each bridge-side is connected to one of the belt-drives. The driving pulleys of the belt-drives are linked to the driving axis, which is driven via the additional belt-drive and the gearbox is used to reduce the speed of the motor.
2.2. Assumptions
The machine drives represent a complex non-linear distributed parameter system. The high-order system possesses several resonant frequencies that can be observed by the drives' step response (see Section 4). From a control design perspective, difficulties arise from mechanical vibrations that are met in the desired control bandwidth (~10 Hz). On the other hand, the design objective is to have a high-performance control system while simultaneously reducing the complexity of the controller. Therefore, a simple mathematical model would only consider the first-order resonance and neglect high-order dynamics. In other words, the design model of the control plant will closely match the frequency response of the real system up to the first resonance. Next, the controller should be adequately designed to cope with the higher-order resonance in such a way that the resonance peaks drop significantly to maintain the system stability. Thus, according to the signal analysis and the drives' features, the following assumptions could be made:
●the DC-servos operating in the current control mode ensure a high-dynamic torque response on the motor axis with a negligible time constant;
●the small backlash in the gearboxes and the backlash of the belt-drives due to the applied pre-tension of the timing belts is negligible;
●a rigid link between a motor shaft and a driving pulley of the belt-drive could be adopted;
●the inertia of the belt-drives' driven pulleys is negligible in comparison to other components of the drive system.
Using the assumptions above, dynamic modeling could be reduced to a two-mass model of the belt-drives that only includes the first resonance. In the control design, the uncertain positioning of the load due to the low repeatability and accuracy of the belt-drive has to be considered as well.
Note, that no attention is paid to the coupled dynamics of the Y-drive due to the parallel driving, thus, the double belt-drive is considered as an equivalent single belt-drive.
3. The motion control algorithm
The erroneous control model with structured and unstructured uncertainties demands a robust control law. VSS control ensures robust stability for the systems with a non-accurate model, namely, it has been proven in the VSS theory that the closed-loop behavior is determined by selection of a sliding manifold. The goal of the VSS control design is to find a control input so that the motion of the system states is restricted to the sliding manifold. If the system states are restricted to the sliding manifold then the sliding mode occurs. The conventional approach utilises discontinuous switching control to guarantee a sliding motion in the sliding mode. The sliding motion is governed by the reduced order system, which is not affected by system uncertainties. Consequently, the sliding motion is insensitive to disturbance and parameter variations (Utkin, 1992).
The essential part of VSS control is its discontinuous control action. In the control of electrical motor drives power switching is normal. In this case, the conventional continuous-time/discontinuous VSS control approach can be successfully applied. However, in many control applications the discontinuous VSS control fails, and chattering arises (S[abanovicH, Jezernik, & Wada, 1996; Young, Utkin & OG zguK ner, 1999). Chattering is an undesirable phenomenon in the control of mechanical systems, since the demanded performance cannot be achieved, or even worse―mechanical parts of the servo system can be destroyed. The main causes of the chattering are neglected high-order control plant dynamics, actuator dynamics, sensor noise, and computer controlled discrete-time implementation in sampled-data systems. Since the main purpose of VSS control is to reject disturbances and to desensitise the system against unknown parametric perturbations, the need to evoke discontinuous feedback control vanishes if the disturbance is sufficiently compensated for, e.g. by the use of a disturbance estimator (Jezernik et al., 1994; Kawamura, Itoh & Sakamoto, 1994). Jezernik has developed a control algorithm for a rigid robot mechanism by combining conventional VSS theory and the disturbance estimation approach. However, the rigid body assumption, which neglects the presence of distributed or concentrated elasticity, can make that control input frequencies of the switcher excite neglected resonant modes. Furthermore, in discrete-time systems discontinuous control fails to ensure the sliding mode and has to be replaced by continuous control (Young et al., 1999). Avoiding discontinuous-feedback control issues associated with unmodelled dynamics and related chattering are no longer critical. Chattering becomes a non-issue.
In plants where control actuators have limited bandwidth there are two possibilities: actuator bandwidth is outside the required closed-loop bandwidth, or, the desired closed-loop bandwidth is beyond the actuator bandwidth. In the fist case, the actuator dynamics are to be considered as the non-modelled dynamics. Consequently, the sliding mode using discontinuous VSS control cannot occur, because the control plant input is continuous. Therefore, the disturbance estimation approach is preferred rather than VSS disturbance rejection. In the second case, the actuator dynamics are to be lumped together with the plant. The matching conditions (Draz\enovicH, 1969) for disturbance rejection and insensitivity to parameter variations in the sliding mode are violated. This results from having dominant dynamics inserted between the physical input to the plant and the controller output. When unmatched disturbances exist the VSS control cannot guarantee the invariant sliding motion. This restriction may be relaxed by introducing a high-order sliding mode control in which the sliding manifold is chosen so that the associated transfer function has a relative degree larger than one (Fridman
& Levant, 1996). Such a control scheme has been used in a number of recently developed VSS control designs, e.g. in Bartolini, Ferrara and Usai (1998). In the latter, the second-order sliding mode control is invoked to create a dynamical controller that eliminates the chattering problem by passing discontinuous control action onto a derivative of the control input.
The system to be controlled is given by Eqs. (1) ―(5) and the system output is the load position. The control objective is the position trajectory tracking. The control algorithm that is proposed in this paper has been developed following the idea of the VSS motion control presented by Jezernik. Since the elastic belt-drive behaves as a low bandwidth actuator, the conventional VSS control algorithm failed to achieve the prescribed control objective. Thus, the robust position trajectory tracking control algorithm presented in the paper has been derived using second-order sliding mode control. In order to eliminate the chattering problem and preserve robustness, the control algorithm uses the continuous control law. Following the VSS disturbance estimation approach, it will be shown that the disturbance estimation feature of the proposed motion control algorithm is similar to the control approach of Jezernik (Jezernik et al., 1994). Additionally, the proposed control algorithm considers the actuator dynamics in order to reshape the poorly damped actuator bandwidth. Consequently, the proposed motion controller consists of a robust position-tracking controller in the outer loop and a vibration controller in the inner loop .