《2021版高考數(shù)學(xué)一輪復(fù)習(xí) 第十二章 復(fù)數(shù)、算法、推理與證明 第5講 數(shù)學(xué)歸納法練習(xí) 理 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2021版高考數(shù)學(xué)一輪復(fù)習(xí) 第十二章 復(fù)數(shù)、算法、推理與證明 第5講 數(shù)學(xué)歸納法練習(xí) 理 北師大版(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第5講 數(shù)學(xué)歸納法
[基礎(chǔ)題組練]
1.用數(shù)學(xué)歸納法證明:首項(xiàng)是a1,公差是d的等差數(shù)列的前n項(xiàng)和公式是Sn=na1+d時(shí),假設(shè)當(dāng)n=k時(shí),公式成立,則Sk=( )
A.a(chǎn)1+(k-1)d B.
C.ka1+d D.(k+1)a1+d
解析:選C.假設(shè)當(dāng)n=k時(shí),公式成立,只需把公式中的n換成k即可,即Sk=ka1+d.
2.設(shè)f(x)是定義在正整數(shù)集上的函數(shù),且f(x)滿足:當(dāng)f(k)≥k+1成立時(shí),總能推出f(k+1)≥k+2成立,那么下列命題總成立的是( )
A.若f(1)<2成立,則f(10)<11成立
B.若f(3)≥4成立,則當(dāng)k≥1時(shí),均有f(k
2、)≥k+1成立
C.若f(2)<3成立,則f(1)≥2成立
D.若f(4)≥5成立,則當(dāng)k≥4時(shí),均有f(k)≥k+1成立
解析:選D.當(dāng)f(k)≥k+1成立時(shí),總能推出f(k+1)≥k+2成立,說(shuō)明如果當(dāng)k=n時(shí),f(n)≥n+1成立,那么當(dāng)k=n+1時(shí),f(n+1)≥n+2也成立,所以如果當(dāng)k=4時(shí),f(4)≥5成立,那么當(dāng)k≥4時(shí),f(k)≥k+1也成立.
3.用數(shù)學(xué)歸納法證明1-+-+…+-=++…+,則當(dāng)n=k+1時(shí),左端應(yīng)在n=k的基礎(chǔ)上加上( )
A. B.-
C.- D.+
解析:選C.因?yàn)楫?dāng)n=k時(shí),左端=1-+-+…+-,當(dāng)n=k+1時(shí),
左端=1-+
3、-+…+-+-.所以,左端應(yīng)在n=k的基礎(chǔ)上加上-.
4.已知f(n)=12+22+32+…+(2n)2,則f(k+1)與f(k)的關(guān)系是( )
A.f(k+1)=f(k)+(2k+1)2+(2k+2)2
B.f(k+1)=f(k)+(k+1)2
C.f(k+1)=f(k)+(2k+2)2
D.f(k+1)=f(k)+(2k+1)2
解析:選A.f(k+1)=12+22+32+…+(2k)2+(2k+1)2+[2(k+1)]2=f(k)+(2k+1)2+(2k+2)2.
5.利用數(shù)學(xué)歸納法證明不等式1+++…+
4、增加了( )
A.1項(xiàng) B.k項(xiàng)
C.2k-1項(xiàng) D.2k項(xiàng)
解析:選D.令不等式的左邊為g(n),則g(k+1)-g(k)=1+++…++++…+-=++…+,
其項(xiàng)數(shù)為2k+1-1-2k+1=2k+1-2k=2k.
故左邊增加了2k項(xiàng).
6.用數(shù)學(xué)歸納法證明1+++…+1)時(shí),第一步應(yīng)驗(yàn)證的不等式是________.
解析:由n∈N+,n>1知,n取第一個(gè)值n0=2,
當(dāng)n=2時(shí),不等式為1++<2.
答案:1++<2
7.用數(shù)學(xué)歸納法證明++…+>-,假設(shè)n=k時(shí),不等式成立,則當(dāng)n=k+1時(shí),應(yīng)推證的目標(biāo)不等式是______________
5、__.
答案:++…++>-
8.用數(shù)學(xué)歸納法證明不等式++…+>(n≥2)的過(guò)程中,由n=k推導(dǎo)n=k+1時(shí),不等式的左邊增加的式子是________.
解析:不等式的左邊增加的式子是+-=,故填.
答案:
9.用數(shù)學(xué)歸納法證明等式12-22+32-42+…+(-1)n-1·n2=(-1)n-1·.
證明:(1)當(dāng)n=1時(shí),左邊=12=1,
右邊=(-1)0×=1,左邊=右邊,原等式成立.
(2)假設(shè)n=k(k≥1,k∈N+)時(shí)等式成立,即有12-22+32-42+…+(-1)k-1·k2=(-1)k-1·.
那么,當(dāng)n=k+1時(shí),
12-22+32-42+…+(-1)k
6、-1·k2+(-1)k·(k+1)2
=(-1)k-1·+(-1)k·(k+1)2
=(-1)k·[-k+2(k+1)]
=(-1)k·.
所以當(dāng)n=k+1時(shí),等式也成立,
由(1)(2)知,對(duì)任意n∈N+,都有
12-22+32-42+…+(-1)n-1·n2=(-1)n-1·.
10.已知f(n)=1++++…+,g(n)=-,n∈N+.
(1)當(dāng)n=1,2,3時(shí),試比較f(n)與g(n)的大小;
(2)猜想f(n)與g(n)的大小關(guān)系,并給出證明.
解:(1)當(dāng)n=1時(shí),f(1)=1,g(1)=1,
所以f(1)=g(1);
當(dāng)n=2時(shí),f(2)=,g(2)=,
7、
所以f(2)<g(2);
當(dāng)n=3時(shí),f(3)=,g(3)=,
所以f(3)<g(3).
(2)由(1)猜想f(n)≤g(n),下面用數(shù)學(xué)歸納法給出證明.
①當(dāng)n=1,2,3時(shí),不等式顯然成立.
②假設(shè)當(dāng)n=k(k≥3,k∈N+)時(shí)不等式成立,即1++++…+<-.
那么,當(dāng)n=k+1時(shí),f(k+1)=f(k)+<-+.
因?yàn)椋?
=-=<0,
所以f(k+1)<-=g(k+1).
由①②可知,對(duì)一切n∈N+,都有f(n)≤g(n)成立.
[綜合題組練]
1.已知整數(shù)p>1,證明:當(dāng)x>-1且x≠0時(shí),(1+x)p>1+px.
證明:用數(shù)學(xué)歸納法證明.
①當(dāng)p=2時(shí)
8、,(1+x)2=1+2x+x2>1+2x,原不等式成立.
②假設(shè)當(dāng)p=k(k≥2,k∈N+)時(shí),不等式(1+x)k>1+kx成立.
則當(dāng)p=k+1時(shí),(1+x)k+1=(1+x)(1+x)k>(1+x)·(1+kx)=1+(k+1)x+kx2>1+(k+1)x.
所以當(dāng)p=k+1時(shí),原不等式也成立.
綜合①②可得,當(dāng)x>-1且x≠0時(shí),對(duì)一切整數(shù)p>1,
不等式(1+x)p>1+px均成立.
2.已知數(shù)列{xn}滿足x1=,且xn+1=(n∈N+).
(1)用數(shù)學(xué)歸納法證明:0
9、,1),不等式成立.
②假設(shè)當(dāng)n=k(k∈N+,k≥1)時(shí),不等式成立,
即xk∈(0,1),
則當(dāng)n=k+1時(shí),xk+1=,
因?yàn)閤k∈(0,1),所以2-xk>0,即xk+1>0.
又因?yàn)閤k+1-1=<0,所以0
10、6),(7,8,9,10),(11,12,13,14,15),(16,17,18,19,20,21),…,分別計(jì)算各組包含的正整數(shù)的和如下:
S1=1,
S2=2+3=5,
S3=4+5+6=15,
S4=7+8+9+10=34,
S5=11+12+13+14+15=65,
S6=16+17+18+19+20+21=111,
…
試猜測(cè)S1+S3+S5+…+S2n-1的結(jié)果,并用數(shù)學(xué)歸納法證明.
解:由題意知,當(dāng)n=1時(shí),S1=1=14;
當(dāng)n=2時(shí),S1+S3=16=24;
當(dāng)n=3時(shí),S1+S3+S5=81=34;
當(dāng)n=4時(shí),S1+S3+S5+S7=256=44.
11、
猜想:S1+S3+S5+…+S2n-1=n4.
下面用數(shù)學(xué)歸納法證明:
(1)當(dāng)n=1時(shí),S1=1=14,等式成立.
(2)假設(shè)當(dāng)n=k(k∈N+,k≥1)時(shí)等式成立,即S1+S3+S5+…+S2k-1=k4,
那么,當(dāng)n=k+1時(shí),S1+S3+S5+…+S2k-1+S2k+1=k4+[(2k2+k+1)+(2k2+k+2)+…+(2k2+k+2k+1)]=k4+(2k+1)(2k2+2k+1)=k4+4k3+6k2+4k+1=(k+1)4,
所以當(dāng)n=k+1時(shí),等式也成立.
根據(jù)(1)和(2)可知,對(duì)于任意的n∈N+,S1+S3+S5+…+S2n-1=n4都成立.
6