空間向量及其線性運算.ppt

收藏

編號:117565243    類型:共享資源    大?。?span id="apyeyjw" class="font-tahoma">566.82KB    格式:PPT    上傳時間:2022-07-09
15
積分
關(guān) 鍵 詞:
空間向量及其線性運算 空間向量的線性運算 空間向量 及其線性運算 向量及其線性運算.ppt
資源描述:
高中數(shù)學(xué)人教B版選修2-1,3.1.1空間向量及其線性運算,復(fù)習(xí)回顧: 1.平面向量的相關(guān)概念:,向量的定義; 向量的表示方法; 零向量; 相等向量; 共線向量; 向量的模; 相反向量。,向量的定義:具有大小和方向的量 向量的表示方法: .幾何表示法:有向線段 .字母表示法:始點A終點B的向量 或者表示為 。 零向量:始點與終點重合的向量 。 向量的模:表示向量的有向線段的長度。 相等向量:模相等、方向相同的向量。 相反向量:模相等、方向相反的向量。 共線向量:基線平行或重合的向量,也叫平行向量。,復(fù)習(xí)回顧: 1.平面向量的相關(guān)概念:,2、平面向量的加法、減法與數(shù)乘運算,向量加法的三角形法則,3、平面向量的加法、減法與數(shù)乘向量運算律,加法交換律:,加法結(jié)合律:,數(shù)乘分配律:,向量的定義:具有大小和方向的量 向量的表示方法: .幾何表示法:有向線段 .字母表示法:始點A終點B的向量 或者表示為 。 零向量:始點與終點重合的向量 。 向量的模:表示向量的有向線段的長度。 相等向量:模相等、方向相同的向量。 相反向量:模相等、方向相反的向量。 共線向量:基線平行或重合的向量,也叫平行向量,向量的定義:具有大小和方向的量 向量的表示方法: .幾何表示法:有向線段 .字母表示法:始點A終點B的向量 或者表示為 。 零向量:始點與終點重合的向量 。 向量的模:表示向量的有向線段的長度。 相等向量:模相等、方向相同的向量。 相反向量:模相等、方向相反的向量。 共線向量:基線平行或重合的向量,也叫平行向量,知識講解: 1.空間向量的相關(guān)概念:,O,A,B,思考:空間任意兩個向量是否可能異面?,結(jié)論:,1.空間任意兩個向量都是共面向量,所以它們可用同一平面內(nèi)的兩條有向線段表示。 2. 凡是涉及空間任意兩個向量的問題,平面向量中有關(guān)結(jié)論仍適用于它們。,O,A,B,C,空間向量的數(shù)乘,空間向量的加減法,平面向量,概念,加法 減法 數(shù)乘 運算,運 算 律,定義,表示法,相等向量,減法:三角形法則,加法:三角形法則或 平行四邊形法則,2.空間向量及其加減與數(shù)乘運算,空間向量,具有大小和方向的量,數(shù)乘:ka,k為正數(shù),負數(shù),零,加法交換律,加法結(jié)合律,數(shù)乘分配律,加法交換律,數(shù)乘分配律,加法:三角形法則或 平行四邊形法則,減法:三角形法則,數(shù)乘:ka,k為正數(shù),負數(shù),零,加法結(jié)合律,成立嗎?,加法結(jié)合律:,O,A,B,C,O,A,B,C,推廣:,(1)首尾相接的若干向量之和,等于由起始 向量的起點指向末尾向量的終點的向量;,(2)首尾相接的若干向量若構(gòu)成一個封閉圖 形,則它們的和為零向量。,例 1,已知平行六面體ABCD-A1B1C1D1,化簡下列向量表達式,并標出化簡結(jié)果的向量。(如圖),A,B,C,D,平行六面體:平行四邊形ABCD平移向量 到A1B1C1D1的軌跡所形成的幾何體.,記做ABCD-A1B1C1D1,結(jié)論:始點相同的三個不共面向量之和,等于以這 三個向量為棱的平行六面體的以公共始點為始點的 對角線所示向量,例 1,已知平行六面體ABCD-A1B1C1D1,化簡下列向量表達式,并標出化簡結(jié)果的向量。(如圖),例 1,已知平行六面體ABCD-A1B1C1D1,化簡下列向量表達式,并標出化簡結(jié)果的向量。(如圖),例 1,已知平行六面體ABCD-A1B1C1D1,化簡下列向量表達式,并標出化簡結(jié)果的向量。(如圖),M,例2如圖,M、N分別是四面體ABCD的棱AB、CD的中點,求證:,例 3,已知平行六面體ABCD-A1B1C1D1,求滿足下列各式的x的值。,例 3,已知平行六面體ABCD-A1B1C1D1,求滿足下列各式的x的值。,例 3,已知平行六面體ABCD-A1B1C1D1, 求滿足下列各的x的值。,例 3,已知平行六面體ABCD-A1B1C1D1,求滿足下列各式的x的值。,平面向量,概念,加法 減法 數(shù)乘 運算,運 算 律,定義,表示法,相等向量,減法:三角形法則,加法:三角形法則或 平行四邊形法則,空間向量,具有大小和方向的量,小結(jié),類比思想 數(shù)形結(jié)合思想,加法交換律,加法結(jié)合律,數(shù)乘分配律,加法交換律,加法結(jié)合律,數(shù)乘分配律,數(shù)乘:ka,k為正數(shù),負數(shù),零,數(shù)乘:ka,k為正數(shù),負數(shù),零,作業(yè),A,B,M,C,G,D,練習(xí)2,在空間四邊形ABCD中,點M、G分別是BC、CD邊的中點,化簡,A,B,M,C,G,D,(2)原式,練習(xí)2,在空間四邊形ABCD中,點M、G分別是BC、CD邊的中點,化簡,練習(xí) 1,解:,練習(xí)2,如圖,M、N分別是四面體ABCD的棱AB、 CD的中點,求證:,A,B,C,D,D,C,B,A,練習(xí)3,在立方體AC1中,點E是面AC 的中心,求下列各式中的x,y.,E,A,B,C,D,D,C,B,A,練習(xí)3,E,在立方體AC1中,點E是面AC 的中心,求下列各式中的x,y.,A,B,C,D,D,C,B,A,練習(xí)3,E,在立方體AC1中,點E是面AC 的中心,求下列各式中的x,y.,練習(xí)4,
展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
提示  裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
關(guān)于本文
本文標題:空間向量及其線性運算.ppt
鏈接地址:http://weibangfood.com.cn/article/117565243.html

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!